Difference between revisions of "Part:BBa K1351043"
Line 8: | Line 8: | ||
In vegetative cells, both operons are repressed by the unstable AbrB regulator. However, during early stages of sporulation AbrB itself is repressed by the master regulator of sporulation Spo0A, making ''sdpABC'' and ''sdpRI'' accessible for RNA polymerase. [1] | In vegetative cells, both operons are repressed by the unstable AbrB regulator. However, during early stages of sporulation AbrB itself is repressed by the master regulator of sporulation Spo0A, making ''sdpABC'' and ''sdpRI'' accessible for RNA polymerase. [1] | ||
− | + | == The ''sdpABC'' Operon – Production and Secretion of the Cannibalism Toxin SDP == | |
The production of the Cannibalism Toxin SDP is a multi-step process. The ''sdpC'' sequence encodes the Pro-SdpC1-203,,which is translated by the ribosome.It is a precursor peptide which needs to be processed by a signal peptidases and the two membrane proteins SdpA and SdpB to become functional. This active form of SDP is a 42-amino-acid antimicrobial peptide (AMP) containing a disulfide bond between two cysteine residues located at the N-terminus.(Fig. 2). [2]] | The production of the Cannibalism Toxin SDP is a multi-step process. The ''sdpC'' sequence encodes the Pro-SdpC1-203,,which is translated by the ribosome.It is a precursor peptide which needs to be processed by a signal peptidases and the two membrane proteins SdpA and SdpB to become functional. This active form of SDP is a 42-amino-acid antimicrobial peptide (AMP) containing a disulfide bond between two cysteine residues located at the N-terminus.(Fig. 2). [2]] | ||
Line 18: | Line 18: | ||
[[File:Background Fig.3.png|thumb|600px|center|Fig. 3. SDP inhibition curves for pathogenic microbes. Relative growth of the strains named abovewith the presence of increasing concentrations of SDP is shown in the curve. As a negative control the gram-negative bacteria ''K. pneumoniae'' and ''P. aeruginosa'' are depicted, which are unaffected by the toxin SDP, as it specifically targets gram-positive bacteria. ''B. subtilis'' is a gram-positive bacteria, but expresses the immunity protein SdpI and is therefore relatively resistent to the toxin SDP. the ''Stapylococcus'' species (also MRSA) though are quite drastically reduced in the presence of the SDP. [4]]] | [[File:Background Fig.3.png|thumb|600px|center|Fig. 3. SDP inhibition curves for pathogenic microbes. Relative growth of the strains named abovewith the presence of increasing concentrations of SDP is shown in the curve. As a negative control the gram-negative bacteria ''K. pneumoniae'' and ''P. aeruginosa'' are depicted, which are unaffected by the toxin SDP, as it specifically targets gram-positive bacteria. ''B. subtilis'' is a gram-positive bacteria, but expresses the immunity protein SdpI and is therefore relatively resistent to the toxin SDP. the ''Stapylococcus'' species (also MRSA) though are quite drastically reduced in the presence of the SDP. [4]]] | ||
− | + | == Sources == | |
[1] Gonzalez-Pastor, J. E. (2011). "Cannibalism: a social behavior in sporulating Bacillus subtilis." FEMS Microbiol Rev 35(3): 415-424. | [1] Gonzalez-Pastor, J. E. (2011). "Cannibalism: a social behavior in sporulating Bacillus subtilis." FEMS Microbiol Rev 35(3): 415-424. | ||
Line 26: | Line 26: | ||
[3] Lamsa, A., et al. (2012). "The Bacillus subtilis cannibalism toxin SDP collapses the proton motive force and induces autolysis." Mol Microbiol 84(3): 486-500. | [3] Lamsa, A., et al. (2012). "The Bacillus subtilis cannibalism toxin SDP collapses the proton motive force and induces autolysis." Mol Microbiol 84(3): 486-500. | ||
+ | === Design=== | ||
+ | == Production of the toxin SDP and the immunity protein SdpI == | ||
+ | |||
+ | By the activation of the QS-dependent promoter P<sub>''QS''</sub>, BaKillus produces the Cannibalism Toxin SDP (Fig. 1A). For evaluation purposes we cloned the ''sdpABC'' operon under the control of inducable xylose promoter P<sub>''xyl''</sub> (Fig. 1B) into a ''∆sdpAB'' and a ''∆sdpC'' mutant strain of ''B. subtilis'' W168. | ||
+ | The construct was then tested by spot-on-lawn assays on ''B. subtilis'' W168 and ''B. subtilis'' W168 ''∆sdpI'' mutant lawns. | ||
+ | |||
+ | [[File:Design Fig.1.png|600px|center|Fig. 1.]] | ||
Revision as of 10:29, 27 October 2014
Canibalism toxin SDP of B. subtilis
Background
The sdp-System of B. subtilis consists of two operons: The sdpABC operon, coding for the production and secretion of the cannibalism toxin SDP and the sdpRI operon responsible for the regulation and production of the immunity protein SdpI (Fig. 1).
In vegetative cells, both operons are repressed by the unstable AbrB regulator. However, during early stages of sporulation AbrB itself is repressed by the master regulator of sporulation Spo0A, making sdpABC and sdpRI accessible for RNA polymerase. [1]
The sdpABC Operon – Production and Secretion of the Cannibalism Toxin SDP
The production of the Cannibalism Toxin SDP is a multi-step process. The sdpC sequence encodes the Pro-SdpC1-203,,which is translated by the ribosome.It is a precursor peptide which needs to be processed by a signal peptidases and the two membrane proteins SdpA and SdpB to become functional. This active form of SDP is a 42-amino-acid antimicrobial peptide (AMP) containing a disulfide bond between two cysteine residues located at the N-terminus.(Fig. 2). [2]]
SDP has been shown to be a very effective AMP against a variety of Gram-positive bacteria in the Phylum of the Firmicutes (Fig. 3). It rapidly collapses the proton motive force (PMF), thus inducing autolysis. [3]
Sources
[1] Gonzalez-Pastor, J. E. (2011). "Cannibalism: a social behavior in sporulating Bacillus subtilis." FEMS Microbiol Rev 35(3): 415-424.
[2] Perez Morales, T. G., et al. (2013). "Production of the cannibalism toxin SDP is a multistep process that requires SdpA and SdpB." J Bacteriol 195(14): 3244-3251.
[3] Lamsa, A., et al. (2012). "The Bacillus subtilis cannibalism toxin SDP collapses the proton motive force and induces autolysis." Mol Microbiol 84(3): 486-500.
Design
Production of the toxin SDP and the immunity protein SdpI
By the activation of the QS-dependent promoter PQS, BaKillus produces the Cannibalism Toxin SDP (Fig. 1A). For evaluation purposes we cloned the sdpABC operon under the control of inducable xylose promoter Pxyl (Fig. 1B) into a ∆sdpAB and a ∆sdpC mutant strain of B. subtilis W168. The construct was then tested by spot-on-lawn assays on B. subtilis W168 and B. subtilis W168 ∆sdpI mutant lawns.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal AgeI site found at 759
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI.rc site found at 746