Difference between revisions of "Part:BBa K1465228"
Line 1: | Line 1: | ||
− | |||
__NOTOC__ | __NOTOC__ | ||
<partinfo>BBa_K1465228 short</partinfo> | <partinfo>BBa_K1465228 short</partinfo> | ||
− | |||
− | + | ||
===Usage and Biology=== | ===Usage and Biology=== | ||
+ | <html> | ||
+ | <h1>Sedoheptulose 1,7-bisphosphatase</h1> | ||
+ | |||
+ | <p>The SBPase is one of enzymes needed for the Calvin cycle. It catalyzes the reaction from sedoheptulose 1,7-bisphosphate to sedoheptulose 7-phosphate. The enzyme is characteristic for the part of sedoheptulose 7-phosphate regeneration in the Calvin-cycle. It was shown before that oveerexpression of the SBPase in tobacco results in enhanced carbon assimilation and crop yield (Rosenthal et al., 2011). SBPases are homodimers with two identical subunits of 35kD to 38kD. The <i>K<sub>M</sub></i>-value of the SBPase homologue GlpX of <a href="http://2014.igem.org/Team:Bielefeld-CeBiTec/Notebook/Organisms#B.methanolicus" target="_blank"><i>Bacillus methanolicus</i></a> is 14 ± 0.5 µM (Stolzenberger et al., 2013).<br> | ||
+ | <i>E. coli</i> does not have a SBPase homologue which is needed <a href="http://2014.igem.org/Team:Bielefeld-CeBiTec/Notebook/Organisms#E.coli" target="_blank"><i>E. coli</i></a> for enabling the whole cycle.</p> | ||
+ | |||
+ | <center> | ||
+ | <div class="element" style="margin:10px; padding:10px; text-align:center; width:450px"> | ||
+ | <a href="https://static.igem.org/mediawiki/2014/e/e7/Bielefeld-CeBiTec_2014-10-11_sbpase.png" target="_blank"><img src="https://static.igem.org/mediawiki/2014/e/e7/Bielefeld-CeBiTec_2014-10-11_sbpase.png" width="450px"></a><br> | ||
+ | <font size="1" style="text-align:center;"> <b>Figure 2:</b> Reaction of sedoheptulose 1,7-bisphosphatase</font> | ||
+ | </div> | ||
+ | </center> | ||
+ | |||
+ | </div> | ||
+ | |||
+ | </html> | ||
+ | |||
+ | ===Characterization=== | ||
+ | |||
+ | <html> | ||
+ | For the characterization of the sedoheptulose 1,7-bisphosphatase (SBPase / glpX) we did an enzyme assay with a His-Tag purification as described before (Stolzenberger et al., 2013).<br> | ||
+ | The proteins were <a href="http://2014.igem.org/Team:Bielefeld-CeBiTec/Notebook/Protocols#Cultivation for Expression of recombinant proteins" target="_blank">overexpressed</a> by adding 1 mM IPTG for inducing the T7 promotor(<a href="https://parts.igem.org/Part:BBa_K1465229" target="_blank">BBa_K1465229</a>). The increasing amount of protein could be verified with a <a href="http://2014.igem.org/Team:Bielefeld-CeBiTec/Notebook/Protocols#Sodiumdodecylsulfatepolyacrylamidegelelectrophoresis%20%28SDS-PAGE%29" target="_blank">SDS-PAGE.</a>.<br> | ||
+ | |||
+ | <center> | ||
+ | <table style="background-color:transparent"> | ||
+ | <tr> | ||
+ | <td> | ||
+ | <div class="element" style="margin:10px; padding:10px; text-align:center; width:260px"> | ||
+ | <a href="https://static.igem.org/mediawiki/2014/2/27/Bielefeld-CeBiTec_2014-10-11_Proteinexpression-fba.jpg" target="_blank"><img src="https://static.igem.org/mediawiki/2014/2/27/Bielefeld-CeBiTec_2014-10-11_Proteinexpression-fba.jpg" width="260px"></a><br> | ||
+ | <font size="2" style="text-align:center;"><b>Figure 3</b>: Proteinexpression of Fba</font> | ||
+ | </div> | ||
+ | </td> | ||
+ | <td> | ||
+ | <div class="element" style="margin:10px; padding:10px; text-align:center; width:260px"> | ||
+ | <a href="https://static.igem.org/mediawiki/2014/0/0d/Bielefeld-CeBiTec_2014-10-11_Proteinexpression-tkt.jpg" target="_blank"><img src="https://static.igem.org/mediawiki/2014/0/0d/Bielefeld-CeBiTec_2014-10-11_Proteinexpression-tkt.jpg" width="260px"></a><br> | ||
+ | <font size="2" style="text-align:center;"><b>Figure 4</b>: Proteinexpression of Tkt</font> | ||
+ | </div> | ||
+ | </td> | ||
+ | <td> | ||
+ | <div class="element" style="margin:10px; padding:10px; text-align:center; width:260px"> | ||
+ | <a href="https://static.igem.org/mediawiki/2014/e/e7/Bielefeld-CeBiTec_2014-10-11_Proteinexpression-glpX.jpg" target="_blank"><img src="https://static.igem.org/mediawiki/2014/e/e7/Bielefeld-CeBiTec_2014-10-11_Proteinexpression-glpX.jpg" width="260px"></a><br> | ||
+ | <font size="2" style="text-align:center;"><b>Figure 5</b>: Proteinexpression of GlpX</font> | ||
+ | </div> | ||
+ | </td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | </center> | ||
+ | |||
+ | All three SDS-Pages showed a band with a clear increase in the amount of protein like described in 'Stolzenberger et al., 2013'. We purified the transketolase (Tkt) and the fructose bisphosphate aldolase (Fba) as well as the sedoheptulose 1,7-bisphosphatase with the <a href="http://2014.igem.org/Team:Bielefeld-CeBiTec/Notebook/Protocols#HisTrapFFPurification" target="_blank">His-Tag mediated purification system</a>.<br> | ||
+ | |||
+ | |||
+ | <center> | ||
+ | <table style="background-color:transparent"> | ||
+ | <tr> | ||
+ | <td> | ||
+ | <div class="element" style="margin:10px; padding:10px; text-align:center; width:260px"> | ||
+ | <a href="https://static.igem.org/mediawiki/2014/9/9c/Bielefeld-CeBiTec_2014-10-11_Proteinpurification-fba.jpg" target="_blank"><img src="https://static.igem.org/mediawiki/2014/9/9c/Bielefeld-CeBiTec_2014-10-11_Proteinpurification-fba.jpg" width="260px"></a><br> | ||
+ | <font size="2" style="text-align:center;"><b>Figure 6</b>: Protein purification of Fba</font> | ||
+ | </div> | ||
+ | </td> | ||
+ | <td> | ||
+ | <div class="element" style="margin:10px; padding:10px; text-align:center; width:260px"> | ||
+ | <a href="https://static.igem.org/mediawiki/2014/2/2e/Bielefeld-CeBiTec_2014-10-11_Proteinpurification-tkt.jpg" target="_blank"><img src="https://static.igem.org/mediawiki/2014/2/2e/Bielefeld-CeBiTec_2014-10-11_Proteinpurification-tkt.jpg" width="260px"></a><br> | ||
+ | <font size="2" style="text-align:center;"><b>Figure 7</b>: Protein purification of Tkt</font> | ||
+ | </div> | ||
+ | </td> | ||
+ | <td> | ||
+ | <div class="element" style="margin:10px; padding:10px; text-align:center; width:260px"> | ||
+ | <a href="https://static.igem.org/mediawiki/2014/b/bf/Bielefeld-CeBiTec_2014-10-11_Proteinpurification-glpX.jpg" target="_blank"><img src="https://static.igem.org/mediawiki/2014/b/bf/Bielefeld-CeBiTec_2014-10-11_Proteinpurification-glpX.jpg" width="260px"></a><br> | ||
+ | <font size="2" style="text-align:center;"><b>Figure 8</b>: Protein purification of GlpX</font> | ||
+ | </div> | ||
+ | </td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | </center> | ||
+ | |||
+ | For the purified enzymes we performed a Bradford assay. | ||
+ | <center> | ||
+ | <div class="element" style="margin:10px; padding:10px; text-align:center; width:450px"> | ||
+ | <a href="https://static.igem.org/mediawiki/2014/3/32/Bielefeld-CeBiTec_2014-10-07_SBPase_Bradford.png" target="_blank"><img src="https://static.igem.org/mediawiki/2014/3/32/Bielefeld-CeBiTec_2014-10-07_SBPase_Bradford.png" width="450px"></a><br> | ||
+ | <font size="2" style="text-align:center;"><b>Figure 9</b>: Bradford assay with purified enzymes (two technical and two biological replicates)</font> | ||
+ | </div> | ||
+ | </center> | ||
+ | The Bradford assay showed high concentrations of Tkt and Fba as well as a very low concentration of GlpX. After the purification we performed an enzyme assay as shown below.<br> | ||
+ | <table style="background-color:transparent"> | ||
+ | <tr> | ||
+ | <td> | ||
+ | <div class="element" style="margin:10px; padding:10px; text-align:center; width:350px"> | ||
+ | <a href="https://static.igem.org/mediawiki/2014/f/f7/Bielefeld-CeBiTec_2014-10-07_SBPaseAssay.png" target="_blank"><img src="https://static.igem.org/mediawiki/2014/f/f7/Bielefeld-CeBiTec_2014-10-07_SBPaseAssay.png" width="350px"></a><br> | ||
+ | <font size="2" style="text-align:center;"><b>Figure 10</b>: Schematical view of the SBPase assay</font> | ||
+ | </div> | ||
+ | </td> | ||
+ | <td> | ||
+ | |||
+ | <table cellspacing="10px" style="background-color:transparent; margin-left:10px;"> | ||
+ | <tr> | ||
+ | <th>Molecule</th><th>Formula</th><th>Molecular weight [M-H]</th> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Fructose-6-P</td><td>C<sub>6</sub>H<sub>15</sub>O<sub>9</sub>P</td><td>259.021</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Glyceraldehyd-3-P</td><td>C<sub>3</sub>H<sub>7</sub>O<sub>6</sub>P</td><td>168.99</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Dihydroxyacetone-P</td><td>C<sub>3</sub>H<sub>7</sub>O<sub>6</sub>P</td><td>168.99</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Xylulose-5-P</td><td>C<sub>5</sub>H<sub>11</sub>O<sub>8</sub>P</td><td>229.01</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Erythrose-4-P</td><td>C<sub>4</sub>H<sub>9</sub>O<sub>7</sub>P</td><td>199.00</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Sedoheptulose-7-P</td><td>C<sub>7</sub>H<sub>15</sub>O<sub>10</sub>P</td><td>289.03</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Sedoheptulose-1,7-BP</td><td>C<sub>7</sub>H<sub>16</sub>O<sub>15</sub>P<sub>2</sub></td><td>368.99</td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | |||
+ | </td> | ||
+ | </table> | ||
+ | The product of the reaction, sedoheptulose 7-phosphate, could be identified via HPLC. We made different approaches for the enzyme assay to characterize all reactions.<br> | ||
+ | |||
+ | <div class="element" style="margin:10px; padding:10px; width:400px;float:right"> | ||
+ | <a href="https://static.igem.org/mediawiki/2014/6/65/Bielefeld-CeBiTec_2014-10-17_HPLC_SBPase_37_enzymes.png" target="_blank"><img src="https://static.igem.org/mediawiki/2014/6/65/Bielefeld-CeBiTec_2014-10-17_HPLC_SBPase_37_enzymes.png" width="400px"></a><br> | ||
+ | <font size="2" style="text-align:center;"><b>Figure 11</b>: Approaches by adding one enzyme at each step. Each step shows the activity of the enzymes.</font> | ||
+ | </div> | ||
+ | <br><br><br> | ||
+ | Reaction mix:<br> | ||
+ | <ul> | ||
+ | <li>20 mM Fructose 6-phosphate</li> | ||
+ | <li>20 mM Glyceraldehyde 3-phosphate</li> | ||
+ | <li>20 mM Dihydroxyacetonephosphate</li> | ||
+ | <li>10 µM Thiamine pyrophosphate</li> | ||
+ | <li>2 mM Manganese chloride</li> | ||
+ | <li>50 mM Tris-HCl</li> | ||
+ | </ul> | ||
+ | <br> | ||
+ | For the first approach we added no enzyme to verify that no product is generated as shown in Figure 11. The second approach includes the transketolase which catalyzes the reaction of F6P and GAP to erythrose 4-phosphate. For the third approach fructose bisphosphate aldolase was added to convert erythrose 4-phosphate with dihydroacetonephosphate to sedoheptulose 1,7-bisphosphate. For the last approach the sedoheptulose 1,7-bisphosphatase (GlpX) was added which results in sedoheptulose 7-phosphate. All intermediates could be verified in all approaches as expected. This measurement showed the activity of the SBPase <i>in vitro</i> (Xylulose 5-phosphate is a byproduct of one of the enzymatical reactions). | ||
+ | |||
+ | <center> | ||
+ | <div class="element" style="margin:10px; padding:10px; text-align:center; width:900px"> | ||
+ | <a href="https://static.igem.org/mediawiki/2014/4/4f/Bielefeld-CeBiTec_2014-10-17_HPLC_SBPase_37_50.png" target="_blank"><img src="https://static.igem.org/mediawiki/2014/4/4f/Bielefeld-CeBiTec_2014-10-17_HPLC_SBPase_37_50.png" width="600px"></a><br> | ||
+ | <font size="2" style="text-align:center;"><b>Figure 12</b>: Comparison of 37°C and 50°C of the <i>in vitro</i> assay (all enzymes).</font> | ||
+ | </div> | ||
+ | </center> | ||
+ | |||
+ | We did a comparison between 37°C and 50°C of the <i>in vitro</i> assay to investigate the different enzymatic activities as shown in Figure 12. The transketolase and aldolase showed a higher activity at 37°C which resulted in more respectively products. The sedoheptulose 1,7-bisphosphatase activity is higher at 50°C but also shows activity at 37°C. We could identify this characteristic because of the accumulation of sedoheptulose 1,7-bisphosphate in the 37°C approach. The second approach has a lower concentration of this sedoheptulose 1,7-bisphosphate but showed a higher concentration of sedoheptulose 7-phosphate which is due to the higher activity of the SBPase at 50°C. This results suggest that it is possible to enable SBPase activity with GlpX in <a href="http://2014.igem.org/Team:Bielefeld-CeBiTec/Notebook/Organisms#E.coli" target="_blank"><i>E. coli</i></a>.<br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <div class="element" style="margin:10px 10px 10px 10px; padding:10px 10px 10px 10px"> | ||
+ | <div id="text"> | ||
+ | <h1>References</h1> | ||
+ | <p> | ||
+ | <ul> | ||
+ | |||
+ | <li id="rosenthal2011"> | ||
+ | <div class="element" style="margin:10px 10px 10px 10px; padding:10px 10px 10px 10px"> | ||
+ | <div id="text"> | ||
+ | Rosenthal et al., 2011. Overexpressing the C(3) photosynthesis cycle enzyme sedoheptulose 1,7-bisphosphatase improves photosynthetic carbon gain and yield under fully open air CO(2) fumigation (FACE). <a href="http://www.biomedcentral.com/1471-2229/11/123" target="_blank">BMC Plant Biol.</a>, vol. 11, pp. 123 | ||
+ | </div> | ||
+ | </div> | ||
+ | </li> | ||
+ | |||
+ | <li id="stolzenberger2013"> | ||
+ | <div class="element" style="margin:10px 10px 10px 10px; padding:10px 10px 10px 10px"> | ||
+ | <div id="text"> | ||
+ | Stolzenberger et al., 2013. Characterization of Fructose 1,6-Bisphosphatase and Sedoheptulose 1,7-Bisphosphate from the Facultative Ribulose Monophosphate Cycle Methylotroph <a href="http://2014.igem.org/Team:Bielefeld-CeBiTec/Notebook/Organisms#B.methanolicus" target="_blank"><i>Bacillus methanolicus</i></a>. <a href="http://jb.asm.org/content/195/22/5112.long" target="_blank">Journal of Bacteriology</a>, Vol. 195, pp. 5112-5122 | ||
+ | </div> | ||
+ | </div> | ||
+ | </li> | ||
+ | |||
<!-- --> | <!-- --> |
Revision as of 03:44, 18 October 2014
Sedoheptulose 1,7-bisphosphatase (glpX) from Bacillus methanolicus
Usage and Biology
Sedoheptulose 1,7-bisphosphatase
The SBPase is one of enzymes needed for the Calvin cycle. It catalyzes the reaction from sedoheptulose 1,7-bisphosphate to sedoheptulose 7-phosphate. The enzyme is characteristic for the part of sedoheptulose 7-phosphate regeneration in the Calvin-cycle. It was shown before that oveerexpression of the SBPase in tobacco results in enhanced carbon assimilation and crop yield (Rosenthal et al., 2011). SBPases are homodimers with two identical subunits of 35kD to 38kD. The KM-value of the SBPase homologue GlpX of Bacillus methanolicus is 14 ± 0.5 µM (Stolzenberger et al., 2013).
E. coli does not have a SBPase homologue which is needed E. coli for enabling the whole cycle.
Characterization
For the characterization of the sedoheptulose 1,7-bisphosphatase (SBPase / glpX) we did an enzyme assay with a His-Tag purification as described before (Stolzenberger et al., 2013).
The proteins were overexpressed by adding 1 mM IPTG for inducing the T7 promotor(BBa_K1465229). The increasing amount of protein could be verified with a SDS-PAGE..
|
Figure 11: Approaches by adding one enzyme at each step. Each step shows the activity of the enzymes.
Reaction mix:
- 20 mM Fructose 6-phosphate
- 20 mM Glyceraldehyde 3-phosphate
- 20 mM Dihydroxyacetonephosphate
- 10 µM Thiamine pyrophosphate
- 2 mM Manganese chloride
- 50 mM Tris-HCl
For the first approach we added no enzyme to verify that no product is generated as shown in Figure 11. The second approach includes the transketolase which catalyzes the reaction of F6P and GAP to erythrose 4-phosphate. For the third approach fructose bisphosphate aldolase was added to convert erythrose 4-phosphate with dihydroacetonephosphate to sedoheptulose 1,7-bisphosphate. For the last approach the sedoheptulose 1,7-bisphosphatase (GlpX) was added which results in sedoheptulose 7-phosphate. All intermediates could be verified in all approaches as expected. This measurement showed the activity of the SBPase in vitro (Xylulose 5-phosphate is a byproduct of one of the enzymatical reactions).
References
-
Rosenthal et al., 2011. Overexpressing the C(3) photosynthesis cycle enzyme sedoheptulose 1,7-bisphosphatase improves photosynthetic carbon gain and yield under fully open air CO(2) fumigation (FACE). BMC Plant Biol., vol. 11, pp. 123
-
Stolzenberger et al., 2013. Characterization of Fructose 1,6-Bisphosphatase and Sedoheptulose 1,7-Bisphosphate from the Facultative Ribulose Monophosphate Cycle Methylotroph Bacillus methanolicus. Journal of Bacteriology, Vol. 195, pp. 5112-5122
Sequence and Features