Difference between revisions of "Part:BBa K1431101"

Line 7: Line 7:
  
 
<center>https://static.igem.org/mediawiki/parts/3/37/SUSTC-Shenzhen_Tet_On_3G.png</center>
 
<center>https://static.igem.org/mediawiki/parts/3/37/SUSTC-Shenzhen_Tet_On_3G.png</center>
 
+
<center>Fig.2:Mechanism of Tet-On 3G system</center>
 
<!-- Add more about the biology of this part here
 
<!-- Add more about the biology of this part here
 
===Usage and Biology===
 
===Usage and Biology===

Revision as of 13:50, 17 October 2014

TetOn-3G, an ideal controller of mammalian gene expression with TRE-3G promoter+PolyA

Tet-On(Tetracycline-Controlled Transcriptional Activation,also known as rtTA2S-M2) is a system of inducible gene expression systems for mammalian cells. Tet-On 3G (also known as rtTA-V16) is similar to Tet-On but was derived from rtTA2S-S2 rather than rtTA2S-M2. The Tet-On 3G protein has 5 amino acid differences compared to Tet-On which appear to increase its sensitivity to doxycycline(Dox) even further. Tet-On 3G is sensitive to 100-fold less Dox and is 7-fold more active than the original Tet-On.[http://en.wikipedia.org/wiki/Tetracycline-controlled_transcriptional_activation]

Target cells that express the Tet-On 3G transactivator protein and contain a gene of interest (GOI) under the control of a TRE3G promoter (PTRE3G,BBa_K1431301) will express high levels of GOI, but only when cultured in the presence of Dox, which is a synthetic tetracycline derivative(the mechanism of Tet-On 3G system show below). In the presence of Dox, Tet-On 3G binds specifically to PTRE3G and activates transcription of the downstream GOI. PTRE3G lacks binding sites for endogenous mammalian transcription factors, so it is virtually silent in the absence of induction.(Source: Clontech)

SUSTC-Shenzhen_Tet_On_3G.png
Fig.2:Mechanism of Tet-On 3G system

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Note that Tet-On Systems respond well only to doxycycline, and not to tetracycline (Gossen & Bujard, 1995). The half-life of Dox in cell culture medium is 24 hours. To maintain continuous inducible GOI expression in cell culture, the medium should be replenished with Dox every 48 hours.