Difference between revisions of "Part:BBa K1431403:Design"
Line 1: | Line 1: | ||
− | |||
__NOTOC__ | __NOTOC__ | ||
<partinfo>BBa_K1431403 short</partinfo> | <partinfo>BBa_K1431403 short</partinfo> | ||
Line 6: | Line 5: | ||
− | === | + | === Introduction === |
− | we | + | |
+ | '''CRISPR(Clustered Regularly Interspaced Short Palindromic Repeat)/Cas System''' is a hot topic for biology research these days. Recently we see dozens of papers published in top journals addressing this intersting field. In case you are not familiar with it, I quoted those lines full of jargons from Wikipedia: | ||
+ | <blockquote>CRISPRs are DNA loci containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a virus.<br> | ||
+ | The CRISPR/Cas system is a prokaryotic immune system that confers resistance to foreign genetic elements such as plasmids and phages and provides a form of acquired immunity. CRISPR spacers recognize and silence these exogenous genetic elements like RNAi in eukaryotic organisms.<br> | ||
+ | Since 2012, the CRISPR/Cas system has been used for gene editing (silencing, enhancing or changing specific genes) that even works in eukaryotes like mice and primates. By inserting a plasmid containing cas genes and specifically designed CRISPRs, an organism's genome can be cut at any desired location.<br> | ||
+ | '''-Wikipedia''' | ||
+ | </blockquote> | ||
+ | |||
+ | In short, CRISPR/Cas System is a tool to edit genes in '''live''' cells. Similar tools include TALEN(Transcription activator-like effector nuclease) and ZFN(Zinc Finger Nuclease). But CRISPR/Cas is superior than those methods in that CRISPR/Cas is guided by short RNA chain (~23bp), which is obviously easier to synthesize.<br> | ||
+ | Moreover, TALENs require a significantly longer time to construct<sup>[http://indepth.systembio.com/cas9-crispr-faq/what-is-the-difference-between-cas9-crispr-and-talen SystemBio]</sup>. | ||
+ | |||
+ | === CRISPR gRNA Basics === | ||
+ | As mentioned above, CRISPR/Cas9 Systems need a gRNA(Guide RNA) sequence to identify the target<sup>[http://www.nature.com/nprot/journal/v8/n11/full/nprot.2013.143.html ZhangFCas]</sup>. The gRNA is a 23bp long RNA beginning with a 3bp PAM(Protospacer Adjacent Motif) sequence. To effectively and specifically target a gene, the remaining 20bp of gRNA have to match the target sequence strictly. According to [http://crispr.mit.edu/about ZhangTool], the approximate quality of gRNA can be denoted as | ||
+ | https://static.igem.org/mediawiki/parts/2/23/Equation-crispr.png . | ||
+ | Remember here that this equation bases only on an approximation of experimental data, and may differ from the actual situation. | ||
− | === | + | === Designing the Sequence === |
− | + | We used a method derived from the method described in the paper by Feng Zhang<sup>[http://www.nature.com/nbt/journal/v31/n9/abs/nbt.2647.html ZhangFgRNA]</sup>. | |
− | + | The whole process can be divided into the following steps: |
Revision as of 16:30, 16 October 2014
gRNA2 for HBV
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Introduction
CRISPR(Clustered Regularly Interspaced Short Palindromic Repeat)/Cas System is a hot topic for biology research these days. Recently we see dozens of papers published in top journals addressing this intersting field. In case you are not familiar with it, I quoted those lines full of jargons from Wikipedia:
CRISPRs are DNA loci containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a virus.
The CRISPR/Cas system is a prokaryotic immune system that confers resistance to foreign genetic elements such as plasmids and phages and provides a form of acquired immunity. CRISPR spacers recognize and silence these exogenous genetic elements like RNAi in eukaryotic organisms.
Since 2012, the CRISPR/Cas system has been used for gene editing (silencing, enhancing or changing specific genes) that even works in eukaryotes like mice and primates. By inserting a plasmid containing cas genes and specifically designed CRISPRs, an organism's genome can be cut at any desired location.
-Wikipedia
In short, CRISPR/Cas System is a tool to edit genes in live cells. Similar tools include TALEN(Transcription activator-like effector nuclease) and ZFN(Zinc Finger Nuclease). But CRISPR/Cas is superior than those methods in that CRISPR/Cas is guided by short RNA chain (~23bp), which is obviously easier to synthesize.
Moreover, TALENs require a significantly longer time to construct[http://indepth.systembio.com/cas9-crispr-faq/what-is-the-difference-between-cas9-crispr-and-talen SystemBio].
CRISPR gRNA Basics
As mentioned above, CRISPR/Cas9 Systems need a gRNA(Guide RNA) sequence to identify the target[http://www.nature.com/nprot/journal/v8/n11/full/nprot.2013.143.html ZhangFCas]. The gRNA is a 23bp long RNA beginning with a 3bp PAM(Protospacer Adjacent Motif) sequence. To effectively and specifically target a gene, the remaining 20bp of gRNA have to match the target sequence strictly. According to [http://crispr.mit.edu/about ZhangTool], the approximate quality of gRNA can be denoted as .
Remember here that this equation bases only on an approximation of experimental data, and may differ from the actual situation.
Designing the Sequence
We used a method derived from the method described in the paper by Feng Zhang[http://www.nature.com/nbt/journal/v31/n9/abs/nbt.2647.html ZhangFgRNA].
The whole process can be divided into the following steps: