Difference between revisions of "Part:BBa K1497013"
Line 1: | Line 1: | ||
− | |||
__NOTOC__ | __NOTOC__ | ||
<partinfo>BBa_K1497013 short</partinfo> | <partinfo>BBa_K1497013 short</partinfo> | ||
− | a | + | |
+ | <html> | ||
+ | <div align="left"> | ||
+ | <table class="MsoTableGrid" | ||
+ | style="border: medium none ; border-collapse: collapse; text-align: left;" | ||
+ | border="0" cellpadding="0" cellspacing="0"> | ||
+ | <tbody> | ||
+ | <tr style="height: 214.9pt;"> | ||
+ | |||
+ | <td style="padding: 0cm 5.4pt; vertical-align: top; width: 306.7pt; height: 214.9pt;"> | ||
+ | The dihydroflavonol 4-reductase (DFR; EC 1.1.1.219) from the plant <i> Dianthus caryophyllus </i> is an enzyme, catalyzing the reversible conversion of dihydroflavonols e.g. dihydro-kaempferol or dihydroquercetin into their corresponding leucoanthocyanidin. This reaction is NADPH-dependent (Liew et al. 1998) but its counter reaction can also occur with NAD+ instead of NADP+ (Queen Mary University of London 2014). DFR contains 353 amino acids and has a molecular weight of approximately 39.4 kDa. <br> <br> | ||
+ | The iGEM Team TU Darmstadt 2014 used the DFR and verified the function of the DFR in their pelargonidin operon <a href="/Part:BBa_K1497023">(K1497023)</a>. | ||
+ | </td> | ||
+ | <td | ||
+ | style="padding: 0cm 5.3pt; vertical-align: top; width: 136.7pt; height: 114.9pt;"> | ||
+ | <img | ||
+ | style="width: 500px; height: 150px;" alt="" | ||
+ | src="https://static.igem.org/mediawiki/parts/a/ac/DFR_Wiki_reaction.png"></p> | ||
+ | <p class="MsoCaption" align="text-align:justify"><span lang="EN-US"><b>Figure 1</b></span></a><span lang="EN-US"> | ||
+ | Reaction of the DFR. One Dihydroflavonol reacts with NADPH to form a leucoanthocyanidin. The reverse reaction works with NAD<sup>+</sup> or NADP<sup>+</sup>. </span></p> | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tbody> | ||
+ | </table> | ||
+ | </div> | ||
+ | </html> | ||
<!-- Add more about the biology of this part here | <!-- Add more about the biology of this part here | ||
Line 17: | Line 41: | ||
<partinfo>BBa_K1497013 parameters</partinfo> | <partinfo>BBa_K1497013 parameters</partinfo> | ||
<!-- --> | <!-- --> | ||
+ | |||
+ | ====References==== | ||
+ | |||
+ | Chye-Fong Liew, Chiang-Shiomg Loh, Chong-Jin Goh, Saw-Hoon Lim 1998, 'The isolation, molecular characterization and expression of dihydroflavonol 4-reductase cDNA in the orchid, Bromheadia finlaysoniana', Plant Science, vol. 135, no. 2, pp. 161-169. Available from: ScienceDirect (31.08.2014)<br><br> | ||
+ | Queen Mary University of London, EC 1.1.1.219. Available from: <http://www.chem.qmul.ac.uk/iubmb/enzyme/EC1/1/1/219.html> (31.08.2014) |
Revision as of 16:20, 11 October 2014
B0034-DFR
The dihydroflavonol 4-reductase (DFR; EC 1.1.1.219) from the plant Dianthus caryophyllus is an enzyme, catalyzing the reversible conversion of dihydroflavonols e.g. dihydro-kaempferol or dihydroquercetin into their corresponding leucoanthocyanidin. This reaction is NADPH-dependent (Liew et al. 1998) but its counter reaction can also occur with NAD+ instead of NADP+ (Queen Mary University of London 2014). DFR contains 353 amino acids and has a molecular weight of approximately 39.4 kDa. The iGEM Team TU Darmstadt 2014 used the DFR and verified the function of the DFR in their pelargonidin operon (K1497023). |
Figure 1 Reaction of the DFR. One Dihydroflavonol reacts with NADPH to form a leucoanthocyanidin. The reverse reaction works with NAD+ or NADP+. |
Sequence and Features
Assembly Compatibility:
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BamHI site found at 348
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal AgeI site found at 100
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI.rc site found at 85
References
Chye-Fong Liew, Chiang-Shiomg Loh, Chong-Jin Goh, Saw-Hoon Lim 1998, 'The isolation, molecular characterization and expression of dihydroflavonol 4-reductase cDNA in the orchid, Bromheadia finlaysoniana', Plant Science, vol. 135, no. 2, pp. 161-169. Available from: ScienceDirect (31.08.2014)
Queen Mary University of London, EC 1.1.1.219. Available from: <http://www.chem.qmul.ac.uk/iubmb/enzyme/EC1/1/1/219.html> (31.08.2014)