Difference between revisions of "Part:BBa K1216001"
(→Colorimetric response) |
(→Colorimetric response) |
||
Line 45: | Line 45: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
− | <td rowspan="2">PhoA | + | <td rowspan="2" align="center">PhoA |
</td> | </td> | ||
<td bgcolor="#FFFFCC">4-Nitrophenoyl-phosphate (pNPP)</td> | <td bgcolor="#FFFFCC">4-Nitrophenoyl-phosphate (pNPP)</td> |
Revision as of 22:31, 28 October 2013
Alkaline Phosphatase (phoA) from Citrobacter
The alkaline phosphatase is a periplasmic homodimeric hydrolase. Each monomer contains 429 amino acids.A form of this protein with added TEV and poly-HIS tags can be found here.
Usage and Biology
Alkaline phosphatases are used as reporter enzymes in different assays such as Western Blotting and in situ hybridization[1]. Testing human blood for Alkaline Phosphatase levels is a routine test that can reveal different conditions[2].
Alkaline phosphatases cleave phosphate groups from organic compounds by hydrolysis while retaining stereochemistry[3].
A good explanation of the mechanism can be found [http://chemwiki.ucdavis.edu/Organic_Chemistry/Organic_Chemistry_With_a_Biological_Emphasis/Chapter_10%3A_Phosphoryl_transfer_reactions/Section_10.3%3A_Hydrolysis_of__phosphates here].
Alkaline phosphatases, respectively their serum levels, are also related to several diseases e.g. metabolic myopathies and Paget Disease. [4]
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 340
Illegal NgoMIV site found at 787 - 1000COMPATIBLE WITH RFC[1000]
Characterization
The final construct was sequenced.
Colorimetric response
[http://2013.igem.org/Team:ETH_Zurich ETH Zurich 2013] used PhoA in their project as reporter enzyme. To test the functionality of the enzyme, liquid culture of E.Coli overexpressing PhoA was incubated with pNPP.
Cell lysate for the assay described below was tested for active enzyme in the same way, but with the fluorescent substrate 4-MU-phosphate. The picture was taken with a common single lens reflex camera mounted on a dark hood at λEx 365 nm.
Hydrolase | Substrate | Color, Absorption λmax |
Stock | Liquid culture | Colonies | Response time |
---|---|---|---|---|---|---|
PhoA | 4-Nitrophenoyl-phosphate (pNPP) | Yellow, 405 nm |
0.5 M in DEA | 50 mM | 0.5 M | ~ 1 minute |
5-Bromo-4-Chloro-3-indolyl phosphate (BCIP) | Blue, 615 nm |
0.1 M in H2O | 1 mM | 50 mM | ~ 30 minutes |
Kinetics
To characterize the enzyme they conducted fluorometric assays to obtain Km values. To this end bacterial cells were grown until in exponential growth phase. Upon reaching this, gene expression was induced by AHL (see [http://http://2013.igem.org/Team:ETH_Zurich/Infoproc ETHZ system 2013]). After another 4-5 h of growth, cells were harvested and lysed, the cell free extract (CFX) used for the fluorometric assay. The properly diluted CFX was measured on a 96 well plate in triplicates per substrate concentration. A plate reader took measurements at λEx 365 nm and λEm 445 nm. The obtained data was evaluated and finally fitted to Michaelis-Menten-Kinetics with SigmaPlot™. See the resulting graph below.
The experimental procedure was as following:
- Prepare buffers
- Lysis buffer: 10 mg/ml Lysozyme, 20 mM Tris buffer, pH 8
- Reaction buffer: 20 mM Tris buffer, pH 8
- NOTE: For other enzymes than the ones we tested (Aes,GusA,NagZ,PhoA) you might need different buffers
- Cell culture
- Inoculate bacteria in 20 mL of LB with antibiotics
- Let grow at 37°C shaking(200 rpm) to an OD600 of 0.6
- Induce enzyme expression (100nM AHL in our case)
- Let grow at 37°C shaking(200 rpm) for 4-5h
- Cell lysis
- Transfer to 50 mL Falcon™ tube
- Spin down at 4°C for 5 min with 4 rcf
- Resuspend in lysis buffer, 1 μL/mg pellet
- Transfer to eppendorf tubes
- Incubate at room temperature for 10 min at 220 rpm
- Spin down at 4°C for 10 min with max. speed
- Transfer the supernatant to new tubes, discard pellets
- Cell free extract can be stored at -20°C or continue processing
- Dilution
- The following values were provided by Johannes Haerle
- Aes: Dilute CFX 1:100 in reaction buffer
- GusA: Dilute CFX 1:100 in reaction buffer
- NagZ: Use pure
- PhoA: Dilute CFX 1:10 in reaction buffer
- The following values were provided by Johannes Haerle
- Hydrolysis reaction
- Perform this measurement in a 96 well plate or similar
- Perform 3 replicates for each substrate concentration
- Present 41.6 μL reaction buffer in each well
- Add 8 μL diluted CFX (the further dilution ocurring here is intended)
- Add 30.4 μL of corresponding substrate
- Detection of fluorescence in suitable plate reader (λEx 365 nm, λEm 445 nm)
Crosstalk
To ensure specificity of the enzyme-substrate pairs used in Colisweeper, a crosstalk test was done to make sure that all overexpressed enzymes specifically cleave their assigned substrate.
This crosstalk test was done in a 96-well plate, each well containing 200 μl from liquid cultures of our ΔaesΔgusAΔnagZ Escherichia coli strain overexpressing either Aes, GusA, NagZ or none, each distributed among the column-wells of the plate. Horizontally, the chromogenic substrates were pipetted to the liquid cultures in the same order as their corresponding hydrolase. If specificity of the chosen enzyme-substrates pairs were given, we would expect an output as shown in the figure below (Figure 26.1.). As Figure 26.2. shows, the overexpressed hydrolases cleave only the substrates they were expected to.
References
- Molecular Cell Biology, Fifth Edition, W.H. Freeman & Co., 2004.
- [http://www.nlm.nih.gov/medlineplus/ency/article/003470.htm Medline Plus]
- [http://chemwiki.ucdavis.edu/Organic_Chemistry/Organic_Chemistry_With_a_Biological_Emphasis/Chapter_10%3A_Phosphoryl_transfer_reactions/Section_10.3%3A_Hydrolysis_of__phosphates Section 10.3: Hydrolysis of phosphates]
- Adams & Victor's Principles Of Neurology, 7th edition, McGraw-Hill Professional, 2000.