Difference between revisions of "Part:BBa K1031300"

Line 10: Line 10:
  
 
<img src="https://static.igem.org/mediawiki/igem.org/9/94/HbpR_Figure3_2013Peking_WH.png", width=400px;/>
 
<img src="https://static.igem.org/mediawiki/igem.org/9/94/HbpR_Figure3_2013Peking_WH.png", width=400px;/>
<p><b>Fig. 2</b> Four domains of HbpR protein. A domain is sensing domain, conformation change may happen with inducer's binding. B domain is a linker. C domain contains an AAA ATPase motif. It has the capacity to hydrolyze ATP and to interact with sigma54 RNA polymerase. D domain binds to DNA via a typical helix-turn-helix motif.  
+
<p style="position:relative; top:-200px"><b>Fig. 2</b> Four domains of HbpR protein. A domain is sensing domain, conformation change may happen with inducer's binding. B domain is a linker. C domain contains an AAA ATPase motif. It has the capacity to hydrolyze ATP and to interact with sigma54 RNA polymerase. D domain binds to DNA via a typical helix-turn-helix motif.  
 
</p>
 
</p>
 +
 
</html>
 
</html>
  
Line 18: Line 19:
 
<!-- Add more about the biology of this part here
 
<!-- Add more about the biology of this part here
 
===Usage and Biology===
 
===Usage and Biology===
 +
<html>
 +
<p id="ContentHbpR7">
 +
We used PCR to get hbpR gene from bacterial strain and inducible promoter Pc' was synthesized by Genscript Company. The gene hbpR was controlled by a constitutive promoter Pc on plasmid pSB4K5. Another plasmid pUC57 containing Pc'-RBS-sfGFP was double transformed with pSB4K5 to construct HbpR biosensor.
 +
To tune its performance, Pc constitutive promoter library and RBS library for reporter were constructed,
  
 +
</p>
 +
<img id="FigurePic5" src=" https://static.igem.org/mediawiki/igem.org/e/ee/HbpR_Figure5_2013Peking_WH.png "/>
 +
</html>
 
<!-- -->
 
<!-- -->
 
<span class='h3bb'>Sequence and Features</span>
 
<span class='h3bb'>Sequence and Features</span>

Revision as of 10:22, 23 September 2013

HbpR-Terminator

HbpR (For more details:[http://2013.igem.org/Team:Peking/Project/BioSensors/HbpR]) is 54-dependent transcriptional factor belonging to NtrC family of prokaryotic transcriptional activators. It shares a high homology to members of the XylR/DmpR subclass. HbpR was found in Pseudomonas azelaica. which can use 2-hydroxybiphenyl (2-HBP) and 2, 2’-dihydroxybiphenyl as sole carbon and energy sources through enzymes encoded by hbpCAD functioning in meta-cleavage pathway.

Fig. 1a. Operon of hbpR. Orange rectangle shows hbpR gene. Blue and green rectangles show hbpCA and hbpD genes controled by PC and PD respectively. The orange rectangle show hbpR gene which encodes HbpR protein. When exposed to effector 2-hydroxybiphenyl, HbpR will activate PC and PD.
Fig. 1b. Pathway for the primary metabolism of 2-hydroxybiphenyl and 2-propylphenol in P. azelaica HBP1. The enzymes for each step are also indicated .

Fig. 2 Four domains of HbpR protein. A domain is sensing domain, conformation change may happen with inducer's binding. B domain is a linker. C domain contains an AAA ATPase motif. It has the capacity to hydrolyze ATP and to interact with sigma54 RNA polymerase. D domain binds to DNA via a typical helix-turn-helix motif.


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal XhoI site found at 1673
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal SapI.rc site found at 387