Difference between revisions of "Part:BBa K801020"
Simon Heinze (Talk | contribs) (→Usage and Biology) |
Simon Heinze (Talk | contribs) (→Usage and Biology) |
||
Line 12: | Line 12: | ||
The UASe-region of this promoter has been shown to be responsible for the ethanol sensitivity of this promoter in ''K. lactis'' (Mazzoni et al., 2000 [http://www.ncbi.nlm.nih.gov/pubmed?term=10724480]). The region includes binding sites for the Rap1-protein (repressor activator protein 1) and the Yap1-protein (a transcription factor involved in stress response) as well as two heat shock elements (HSE) and five stress response elemtents (STRE). All these cis-elements and the respecitve proteins also occur in ''S. cerevisiae''. For this reason we wanted to examine whether the KlADH4-promoter remains ethanol inducible if it is transferred from its natural organism (''K. lactis'') to ''S. cerevisiae''. | The UASe-region of this promoter has been shown to be responsible for the ethanol sensitivity of this promoter in ''K. lactis'' (Mazzoni et al., 2000 [http://www.ncbi.nlm.nih.gov/pubmed?term=10724480]). The region includes binding sites for the Rap1-protein (repressor activator protein 1) and the Yap1-protein (a transcription factor involved in stress response) as well as two heat shock elements (HSE) and five stress response elemtents (STRE). All these cis-elements and the respecitve proteins also occur in ''S. cerevisiae''. For this reason we wanted to examine whether the KlADH4-promoter remains ethanol inducible if it is transferred from its natural organism (''K. lactis'') to ''S. cerevisiae''. | ||
+ | |||
+ | The characterization of this part was done using a KlADH4-promoter + eGFP construct. | ||
+ | |||
+ | In a first experiment, the transformed yeast cells were picked grown in a pre-culture (SC-U Medium) over night and transferred into SC-U Medium with different concentrations of ethanol (0%, 4%, 8%, 10%). The eGFP-fluorescence and the OD600 were measured at t = 0h, 3h, 18h, 21h, 24h. | ||
<span class='h3bb'>Sequence and Features</span> | <span class='h3bb'>Sequence and Features</span> |
Revision as of 15:02, 24 September 2012
KlADH4 yeast promoter, ethanol inducible
This part is the ethanol inducible promoter controlling the KlADH4-gene of K. lactis.
The use of this ethanol inducible promoter to produce heterologous proteins in K. lactis was shown by Salioa et al. 1999 [http://www.ncbi.nlm.nih.gov/pubmed?term=9872759].
We characterized this part in S. cerevisiae (strain INVSc1) to find out whether this part is also ethanol-inducible in this yeast.
Usage and Biology
The UASe-region of this promoter has been shown to be responsible for the ethanol sensitivity of this promoter in K. lactis (Mazzoni et al., 2000 [http://www.ncbi.nlm.nih.gov/pubmed?term=10724480]). The region includes binding sites for the Rap1-protein (repressor activator protein 1) and the Yap1-protein (a transcription factor involved in stress response) as well as two heat shock elements (HSE) and five stress response elemtents (STRE). All these cis-elements and the respecitve proteins also occur in S. cerevisiae. For this reason we wanted to examine whether the KlADH4-promoter remains ethanol inducible if it is transferred from its natural organism (K. lactis) to S. cerevisiae.
The characterization of this part was done using a KlADH4-promoter + eGFP construct.
In a first experiment, the transformed yeast cells were picked grown in a pre-culture (SC-U Medium) over night and transferred into SC-U Medium with different concentrations of ethanol (0%, 4%, 8%, 10%). The eGFP-fluorescence and the OD600 were measured at t = 0h, 3h, 18h, 21h, 24h.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 753
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI site found at 590
References
- [1] Saliola, M., Mazzoni, C., Solimando, N., Crisà, A., Falcone, C. & Jung, G. (1999) ‚Use of the KlADH4 promoter for ethanol-dependent production of recombinant human serum albumin in Kluyveromyces lactis’, Appl Environ Microbiol. 65 (1), 53-60. [http://www.ncbi.nlm.nih.gov/pubmed?term=10724480 PMID: 9872759]
- [2] Mazzoni, C., Santori, F., Saliola, M. & Falcone, C. (2000) ‚Molecular analysis of UASE, a cis element containing stress response elements responsible for ethanol induction of the KlADH4 gene of Kluyveromyces lactis’, Res. Microbiol. 151, 19-28. [http://www.ncbi.nlm.nih.gov/pubmed?term=10724480 PMID: 10724480]