Difference between revisions of "Part:BBa K896000"

Line 5: Line 5:
 
Sulfide-dependent anoxygenic photosynthesis, driven by photosystem I (PS/I) alone, among cyanobacteria was first described for Oscillatoria limnetica from Solar Lake. Later photosynthetic sulfide oxidation in O. limnetica led to the discovery of sulfide-quinone reductase (SQR; E.C.1.8.5.′), a novel enzyme that transfers electrons from sulfide into the quinone pool.<p></p>
 
Sulfide-dependent anoxygenic photosynthesis, driven by photosystem I (PS/I) alone, among cyanobacteria was first described for Oscillatoria limnetica from Solar Lake. Later photosynthetic sulfide oxidation in O. limnetica led to the discovery of sulfide-quinone reductase (SQR; E.C.1.8.5.′), a novel enzyme that transfers electrons from sulfide into the quinone pool.<p></p>
 
Above are sulfide-induced sulfide-Quinone Reductase with the electron transport system.<p></p>
 
Above are sulfide-induced sulfide-Quinone Reductase with the electron transport system.<p></p>
[[Image:SQR ETC.png]]
+
[[Image:SQR ETC.png]](Cohen, Y., E. Padan, and M. Shilo, Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. J Bacteriol, 1975. 123(3): p. 855-61.)
 
   
 
   
  

Revision as of 23:18, 20 September 2012

SQR(sulfide quinone reductase),from Synechococcus sp. PCC 7002 plasmid pAQ7

 SQR introduction:
Sulfide-dependent anoxygenic photosynthesis, driven by photosystem I (PS/I) alone, among cyanobacteria was first described for Oscillatoria limnetica from Solar Lake. Later photosynthetic sulfide oxidation in O. limnetica led to the discovery of sulfide-quinone reductase (SQR; E.C.1.8.5.′), a novel enzyme that transfers electrons from sulfide into the quinone pool.

Above are sulfide-induced sulfide-Quinone Reductase with the electron transport system.

SQR ETC.png(Cohen, Y., E. Padan, and M. Shilo, Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. J Bacteriol, 1975. 123(3): p. 855-61.)


 Cloning of SQR gene:
SQR gene came from Synechococcus elongatus PCC7002 because the hypersaline strain S. elongatus PCC 7002, which is already sequenced, is 96% similar to O.limnetica SQR gene.

SQR cloning.jpg

 Function analysis of SQR gene:


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI site found at 349