Difference between revisions of "Part:BBa K896000"
Cutelucypoop (Talk | contribs) |
|||
Line 1: | Line 1: | ||
− | |||
__NOTOC__ | __NOTOC__ | ||
<partinfo>BBa_K896000 short</partinfo> | <partinfo>BBa_K896000 short</partinfo> | ||
− | + | SQR introduction: | |
+ | Sulfide-dependent anoxygenic photosynthesis, driven by photosystem I (PS/I) alone, among cyanobacteria was first described for Oscillatoria limnetica from Solar Lake. Later photosynthetic sulfide oxidation in O. limnetica led to the discovery of sulfide-quinone reductase (SQR; E.C.1.8.5.′), a novel enzyme that transfers electrons from sulfide into the quinone pool. | ||
+ | |||
+ | Cloning of SQR gene: | ||
+ | SQR gene came from Synechococcus elongatus PCC7002 because the hypersaline strain S. elongatus PCC 7002, which is already sequenced, is 96% similar to O.limnetica SQR gene. | ||
+ | |||
+ | |||
<!-- Add more about the biology of this part here | <!-- Add more about the biology of this part here |
Revision as of 16:35, 13 September 2012
SQR(sulfide quinone reductase),from Synechococcus sp. PCC 7002 plasmid pAQ7
SQR introduction:
Sulfide-dependent anoxygenic photosynthesis, driven by photosystem I (PS/I) alone, among cyanobacteria was first described for Oscillatoria limnetica from Solar Lake. Later photosynthetic sulfide oxidation in O. limnetica led to the discovery of sulfide-quinone reductase (SQR; E.C.1.8.5.′), a novel enzyme that transfers electrons from sulfide into the quinone pool.
Cloning of SQR gene:
SQR gene came from Synechococcus elongatus PCC7002 because the hypersaline strain S. elongatus PCC 7002, which is already sequenced, is 96% similar to O.limnetica SQR gene.
Sequence and Features
Assembly Compatibility:
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI site found at 349