Difference between revisions of "Part:BBa K525404"

Line 20: Line 20:
 
!Result
 
!Result
 
|-
 
|-
|rowspan="3"|[[Part:BBa_K525304#Expression_in_E._coli | Expression (''E. coli'')]]
+
|rowspan="3"|[[Part:BBa_K525404#Expression_in_E._coli | Expression (''E. coli'')]]
 
|Localisation
 
|Localisation
 
|Inclusion body
 
|Inclusion body
Line 32: Line 32:
 
|rowspan="3"|Purification
 
|rowspan="3"|Purification
 
|Molecular weight
 
|Molecular weight
|109.9 kDa
+
|136.7 kDa
 
|-
 
|-
 
|Theoretical pI
 
|Theoretical pI
|5.70
+
|4.92
 
|-
 
|-
 
|Excitation / emission
 
|Excitation / emission

Revision as of 21:31, 21 September 2011

Fusion Protein of S-Layer SbpA and mCherry RFP

Fusion Protein of S-Layer sbpA and mCherry RFP

S-layers (crystalline bacterial surface layer) are crystal-like layers consisting of multiple protein monomers and can be found in various (archae-)bacteria. They constitute the outermost part of the cell wall. Especially their ability for self-assembly into distinct geometries is of scientific interest. At phase boundaries, in solutions and on a variety of surfaces they form different lattice structures. The geometry and arrangement is determined by the C-terminal self assembly-domain, which is specific for each S-layer protein. The most common lattice geometries are oblique, square and hexagonal. By modifying the characteristics of the S-layer through combination with functional groups and protein domains as well as their defined position and orientation to eachother (determined by the S-layer geometry) it is possible to realize various practical applications ([http://onlinelibrary.wiley.com/doi/10.1111/j.1574-6968.2006.00573.x/full Sleytr et al., 2007]).


Usage and Biology

S-layer proteins can be used as scaffold for nanobiotechnological applications and devices by e.g. fusing the S-layer's self-assembly domain to other functional protein domains. It is possible to coat surfaces and liposomes with S-layers. A big advantage of S-layers: after expressing in E. coli and purification, the nanobiotechnological system is cell-free. This enhances the biological security of a device.

This fluorescent S-layer fusion protein is used to characterize purification methods and the S-layer's ability to self-assemble on surfaces. It is also possible to use the characteristic of mCherry as a pH indicator ([http://pubs.acs.org/doi/abs/10.1021/bm901071b Kainz et al., 2010]).


Important parameters

Experiment Characteristic Result
Expression (E. coli) Localisation Inclusion body
Compatibility E. coli KRX and BL21(DE3)
Induction of expression expression of T7 polymerase + IPTG or lactose
Purification Molecular weight 136.7 kDa
Theoretical pI 4.92
Excitation / emission 587 / 610 nm
Immobilization behaviour Immobilization time 4 h


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 104
    Illegal BglII site found at 221
    Illegal XhoI site found at 1996
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 76
    Illegal AgeI site found at 3904
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI.rc site found at 493
    Illegal BsaI.rc site found at 622