Difference between revisions of "Part:BBa J06504"
(→Usage and Biology) |
|||
Line 9: | Line 9: | ||
===Usage and Biology=== | ===Usage and Biology=== | ||
Some strange experimental results that have been seen could be explained by an internal RBS + start. The 10th amino acid is a Met which is preceded by AGGAGGA(NNNN). This is almost a perfect consensus RBS so it seems quite likely that translation can begin 10 amino acids in. Note that mCherry was designed by fusing the N and C terminal regions of EGFP on to a mRFP variant (to increase tolerance to protein fusions). Thus, removing the first several amino acids is not expected to have much effect on fluorescence. If this is truly a strong internal RBS, then the identity of any attached RBS may have little effect. Also, one should be careful when making protein fusions. --[[User:Austin|Austin]] | Some strange experimental results that have been seen could be explained by an internal RBS + start. The 10th amino acid is a Met which is preceded by AGGAGGA(NNNN). This is almost a perfect consensus RBS so it seems quite likely that translation can begin 10 amino acids in. Note that mCherry was designed by fusing the N and C terminal regions of EGFP on to a mRFP variant (to increase tolerance to protein fusions). Thus, removing the first several amino acids is not expected to have much effect on fluorescence. If this is truly a strong internal RBS, then the identity of any attached RBS may have little effect. Also, one should be careful when making protein fusions. --[[User:Austin|Austin]] | ||
+ | |||
+ | The copy as provided in the 2010 distribution is incorrect - it contains ~500 bp of something that is not mCherry, and kinda looks like a . You can get a functioning copy via PCR out of [[Part:BBa_J06702]]. | ||
+ | --[http://openwetware.org/wiki/User:Joseph_T._Meyerowitz jmeyerow] | ||
<span class='h3bb'>Sequence and Features</span> | <span class='h3bb'>Sequence and Features</span> |
Revision as of 22:26, 22 June 2011
monomeric RFP optimized for bacteria
mRFP1-derived, altered to be a BioBrick by removing a PstI site and adding BioBrick ends. [mRFP1 was itself a derived from DsRed (via 33 mutations!)]
mCherry is one of several "second-generation" monomeric fluorescent proteins developed in Roger Tsien's laboratory at UCSD (cf., Nature Biotechnology 22, 1567 - 1572 (2004). PMID 15558047
Usage and Biology
Some strange experimental results that have been seen could be explained by an internal RBS + start. The 10th amino acid is a Met which is preceded by AGGAGGA(NNNN). This is almost a perfect consensus RBS so it seems quite likely that translation can begin 10 amino acids in. Note that mCherry was designed by fusing the N and C terminal regions of EGFP on to a mRFP variant (to increase tolerance to protein fusions). Thus, removing the first several amino acids is not expected to have much effect on fluorescence. If this is truly a strong internal RBS, then the identity of any attached RBS may have little effect. Also, one should be careful when making protein fusions. --Austin
The copy as provided in the 2010 distribution is incorrect - it contains ~500 bp of something that is not mCherry, and kinda looks like a . You can get a functioning copy via PCR out of Part:BBa_J06702. --[http://openwetware.org/wiki/User:Joseph_T._Meyerowitz jmeyerow]
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]