|
|
Line 31: |
Line 31: |
| | | |
| '''Method'''<br> | | '''Method'''<br> |
− | We have made constructs with a synthetic promoter library (SPL) in front of the E1010, by using BBa_I03507 and the psB3T5. For information on design of an SPL compatible with the BB standard see [http://bbf.openwetware.org/RFC.html#BBF_RFC_63:_DTU_Synthetic_Promoter_Library_Standard BBF RFC63]. | + | We have made constructs with a synthetic promoter library (SPL) in front of the E1010, by using BBa_I13507 and the plasmid backbone pSB3T5. For information on design of an SPL compatible with the BB standard see [http://bbf.openwetware.org/RFC.html#BBF_RFC_63:_DTU_Synthetic_Promoter_Library_Standard BBF RFC63]. |
| We have benchmarked the relative promoter strength range achieved from the SPL to the standard promoter BBa_J23101, by calculating the relative promoter strength in vivo as suggested in [http://bbf.openwetware.org/RFC.html#BBF_RFC_19:_Measuring_the_Activity_of_BioBrick.E2.84.A2_Promoters_Using_an_In_Vivo_Reference_Standard BBF RFC 19]. For further explanation on methods see our [http://2010.igem.org/Team:DTU-Denmark iGEM_DTU_2010 wiki]. | | We have benchmarked the relative promoter strength range achieved from the SPL to the standard promoter BBa_J23101, by calculating the relative promoter strength in vivo as suggested in [http://bbf.openwetware.org/RFC.html#BBF_RFC_19:_Measuring_the_Activity_of_BioBrick.E2.84.A2_Promoters_Using_an_In_Vivo_Reference_Standard BBF RFC 19]. For further explanation on methods see our [http://2010.igem.org/Team:DTU-Denmark iGEM_DTU_2010 wiki]. |
| | | |
Revision as of 03:37, 28 October 2010
This experience page is provided so that any user may enter their experience using this part.
Please enter
how you used this part and how it worked out.
RANDOM SEQUENCE FOUND WITHIN PART
CGCTGATAGTGCTAGTGTAGATCGC is found after the RFP stop codon and before the BioBricks suffix. Should not affect transcription or translation of RFP, but good to keep note of it especially in analyzing sequencing results. (KP of siGEM)
Applications of BBa_E1010
User Reviews
UNIQ893eaffbc61b13db-partinfo-00000000-QINU
•••
DTU_igem_2010
|
Characterization of RFP BBa_E1010
We have characterized RFP BBa_E1010 in two different chassis to test the compatibility and the possible range of expressions before limitations in the cell metabolism.
Method
We have made constructs with a synthetic promoter library (SPL) in front of the E1010, by using BBa_I13507 and the plasmid backbone pSB3T5. For information on design of an SPL compatible with the BB standard see [http://bbf.openwetware.org/RFC.html#BBF_RFC_63:_DTU_Synthetic_Promoter_Library_Standard BBF RFC63].
We have benchmarked the relative promoter strength range achieved from the SPL to the standard promoter BBa_J23101, by calculating the relative promoter strength in vivo as suggested in [http://bbf.openwetware.org/RFC.html#BBF_RFC_19:_Measuring_the_Activity_of_BioBrick.E2.84.A2_Promoters_Using_an_In_Vivo_Reference_Standard BBF RFC 19]. For further explanation on methods see our [http://2010.igem.org/Team:DTU-Denmark iGEM_DTU_2010 wiki].
Results
We show that the RFP E1010 can be expressed with the following results
- In XL1blue with an RPU range form 0 to at least 1,13 RPU.
- In DHA5&alpha with an RPU range from 0 to 1,35 RPU.
Graph2 XL1BLUE illustrates the variation in promoter strengths of the SPL mapped against the reference promoters. PM corresponds to BBa_J23101, PS corresponds to BBa_J23100 and PW corresponds to BBa_J23116.
Graph3 XL1BLUEillustrates the specific activities of the SPL promoters ranked together with the reference promoters.
Graph4 DH5aillustrates the variation in promoter strengths of the SPL mapped against the reference promoters. PM corresponds to BBa_J23101, PS corresponds to BBa_J23100 and PW corresponds to BBa_J23116.
Graph5 DH5a illustrates the specific activities of the SPL promoters ranked against the reference promoters.
Table 1 shows the specific activities and RPUs calculated for all the SPL constructs run in BioLector in XL1-blue
Construct | Specific Activity | RPU |
BBa_J23101 | 0.0795 | 1.00 |
SPL_RFP01 | 0.00578 | 0.0727 |
SPL_RFP02 | 0.0418 | 0.526 |
SPL_RFP03 | 0.0612 | 0.770 |
SPL_RFP04 | -0.00027 | -0.00340 |
SPL_RFP05 | 0.0418 | 0.526 |
SPL_RFP06 | 0.0856 | 1.08 |
SPL_RFP07 | 0.0134 | 0.168 |
SPL_RFP08 | 0.0534 | 0.672 |
SPL_RFP09 | 0.0638 | 0.803 |
SPL_RFP10 | 0.00260 | 0.0327 |
SPL_RFP11 | 0.0900 | 1.13 |
SPL_RFP12 | 0.0600 | 0.755 |
SPL_RFP13 | 0.0754 | 0.949 |
SPL_RFP14 | 0.00795 | 0.100 |
SPL_RFP16 | 0.00959 | 0.121 |
Table 2 shows the specific activities and RPUs calculated for all the SPL constructs run in BioLector in DH5&alpha
Construct | Specific Activity | RPU |
BBa_J23101 | 0.0712 | 1.00 |
SPL_RFP-D01 | 0.0715 | 1.00 |
SPL_RFP-D02 | 0.0959 | 1.35 |
SPL_RFPD-03 | 0.0781 | 1.10 |
SPL_RFPD-04 | 0.0531 | 0.746 |
SPL_RFPD-05 | 0.0732 | 1.03 |
SPL_RFPD-06 | 0.0552 | 0.775 |
SPL_RFPD-07 | 0.0358 | 0.503 |
SPL_RFPD-08 | 0.0668 | 0.938 |
SPL_RFPD-09 | 0.0254 | 0.357 |
SPL_RFPD-10 | 0.0165 | 0.231 |
SPL_RFPD-11 | -0.00284 | -0.399 |
SPL_RFPD-12 | 0.00276 | 0.0387 |
SPL_RFPD-13 | 0.0776 | 1.09 |
SPL_RFPD-14 | 0.0018 | 0.0253 |
SPL_RFPD-15 | 0.00302 | 0.0424 |
Conclusions and Discussion
|
;
Antiquity
|
This review comes from the old result system and indicates that this part did not work in some test.
|
No review score entered.
Nkessler
|
We successfully used this part for a read out system, e.g. in BBa_K389016. Additionally we compared it with a luciferase: BBa_K389004.
|
UNIQ893eaffbc61b13db-partinfo-00000006-QINU