Difference between revisions of "Part:BBa K5237001"
Line 53: | Line 53: | ||
</div> | </div> | ||
<ul> | <ul> | ||
− | <li class="toclevel-1 tocsection-1"><a href="#1"><span class="tocnumber">1</span> <span class="toctext">Sequence | + | <li class="toclevel-1 tocsection-1"><a href="#1"><span class="tocnumber">1</span> <span class="toctext">1. Sequence |
− | + | Overview</span></a> | |
</li> | </li> | ||
− | <li class="toclevel-1 tocsection-2"><a href="#2"><span class="tocnumber">2</span> <span class="toctext">Usage and | + | <li class="toclevel-1 tocsection-2"><a href="#2"><span class="tocnumber">2</span> <span class="toctext">2. Usage and |
Biology</span></a> | Biology</span></a> | ||
</li> | </li> | ||
− | <li class="toclevel-1 tocsetction-3"><a href="#3"><span class="tocnumber">3</span> <span class="toctext">Assembly | + | <li class="toclevel-1 tocsetction-3"><a href="#3"><span class="tocnumber">3</span> <span class="toctext">3. Assembly |
− | and | + | and Part Evolution</span></a> |
<ul> | <ul> | ||
− | <li class="toclevel-2 tocsection-3.1"><a href="#3.1"><span class="tocnumber">3.1</span> <span class="toctext"> | + | <li class="toclevel-2 tocsection-3.1"><a href="#3.1"><span class="tocnumber">3.1</span> <span class="toctext">3.1 Qualitatively Assessing Gene Editing of Cas12a Orthologs</span></a> |
</li> | </li> | ||
− | <li class="toclevel-2 tocsection-3.2"><a href="#3.2"><span class="tocnumber">3.2</span> <span class="toctext">Quantitative | + | <li class="toclevel-2 tocsection-3.2"><a href="#3.2"><span class="tocnumber">3.2</span> <span class="toctext">3.2 Quantitative Comparison Between AsCas12a and MbCas12a</span></a> |
</li> | </li> | ||
− | <li class="toclevel-2 tocsection-3.3"><a href="#3.3"><span class="tocnumber">3.3</span> <span class="toctext">MbCas12a | + | <li class="toclevel-2 tocsection-3.3"><a href="#3.3"><span class="tocnumber">3.3</span> <span class="toctext">3.3 Multiplex Gene Editing Using MbCas12a and SpCas9</span></a> |
− | + | ||
</li> | </li> | ||
− | <li class="toclevel-2 tocsection-3.4"><a href="#3.4"><span class="tocnumber">3.4</span> <span class="toctext"></span> | + | <li class="toclevel-2 tocsection-3.4"><a href="#3.4"><span class="tocnumber">3.4</span> <span class="toctext">3.4 Fusion Guide RNA Enabled Editing with MbCas12a</span></a> |
</li> | </li> | ||
− | <li class="toclevel-2 tocsection-3.5"><a href="#3.5"><span class="tocnumber">3.5</span> <span class="toctext">MbCas12a | + | <li class="toclevel-2 tocsection-3.5"><a href="#3.5"><span class="tocnumber">3.5</span> <span class="toctext">3.5 Establishing Functional Fusion Cas Proteins with MbCas12a and SpCas9</span></a> |
</li> | </li> | ||
− | <li class="toclevel-2 tocsection-3.6"><a href="#3.6"><span class="tocnumber">3.6</span> <span class="toctext"> | + | <li class="toclevel-2 tocsection-3.6"><a href="#3.6"><span class="tocnumber">3.6</span> <span class="toctext">3.6 The Combination of Fusion Guide RNAs and Fusion Cas Proteins</span></a> |
</li> | </li> | ||
</ul> | </ul> | ||
Line 79: | Line 78: | ||
<li class="toclevel-1 tocsection-5"><a href="#4"><span class="tocnumber">4</span> <span class="toctext">Results</span></a> | <li class="toclevel-1 tocsection-5"><a href="#4"><span class="tocnumber">4</span> <span class="toctext">Results</span></a> | ||
</li> | </li> | ||
− | <li class="toclevel-1 tocsection- | + | <ul> |
+ | <li class="toclevel-2 tocsection-4.1"><a href="#4.1"><span class="tocnumber">4.1</span> <span class="toctext">4.1 dMbCas12a as Part of a Cas Staple Establishes DNA-DNA Proximity</span></a> | ||
+ | </li> | ||
+ | </ul> | ||
+ | <li class="toclevel-1 tocsection-5"><a href="#5"><span class="tocnumber">5</span> <span class="toctext">5. References</span></a> | ||
</li> | </li> | ||
</ul> | </ul> | ||
Line 344: | Line 347: | ||
</table></section> | </table></section> | ||
<section id="1"> | <section id="1"> | ||
− | <h1>1. Sequence | + | <h1>1. Sequence Overview</h1> |
</section> | </section> | ||
</body> | </body> |
Revision as of 12:44, 2 October 2024
Staple Subunit: dMbCas12a-Nucleoplasmin NLS
dMbCas12a is one crucial part of our PICasSO tool box, being able to function as a Cas staple with the fgRNA (BBa_K5237000) and the dSpCas9 (BBa_K5237002). Transactivation has been shown using this part proving the proper formation of our Cas staple. Easy employment through swift reprogramming of the fgRNA.
Contents
- 1 1. Sequence Overview
- 2 2. Usage and Biology
- 3 3. Assembly
and Part Evolution
- 3.1 3.1 Qualitatively Assessing Gene Editing of Cas12a Orthologs
- 3.2 3.2 Quantitative Comparison Between AsCas12a and MbCas12a
- 3.3 3.3 Multiplex Gene Editing Using MbCas12a and SpCas9
- 3.4 3.4 Fusion Guide RNA Enabled Editing with MbCas12a
- 3.5 3.5 Establishing Functional Fusion Cas Proteins with MbCas12a and SpCas9
- 3.6 3.6 The Combination of Fusion Guide RNAs and Fusion Cas Proteins
- 4 Results
- 5 5. References
While synthetic biology has in the past focused on engineering the genomic sequence of organisms, the 3D
spatial organization of DNA is well-known to be an important layer of information encoding in
particular in eukaryotes, playing a crucial role in
gene regulation and hence
cell fate, disease development, evolution, and more. However, tools to precisely manipulate and control the
genomic spatial
architecture are limited, hampering the exploration of
3D genome engineering in synthetic biology. We - the iGEM Team Heidelberg 2024 - have developed PICasSO, a
powerful
molecular toolbox for rationally engineering genome 3D architectures in living cells, based on
various DNA-binding proteins.
The PICasSO part collection offers a comprehensive, modular platform for precise manipulation and re-programming of DNA-DNA interactions using engineered "protein staples" in living cells. This enables researchers to recreate naturally occurring alterations of 3D genomic interactions, such as enhancer hijacking in cancer, or to design entirely new spatial architectures for artificial gene regulation and cell function control. Specifically, the fusion of two DNA binding proteins enables to artificially bring otherwise distant genomic loci into spatial proximity. To unlock the system's full potential, we introduce versatile chimeric CRISPR/Cas complexes, connected either at the protein or - in the case of CRISPR/Cas-based DNA binding moieties - the guide RNA level. These complexes are referred to as protein- or Cas staples, respectively. Beyond its versatility with regard to the staple constructs themselves, PICasSO includes robust assay systems to support the engineering, optimization, and testing of new staples in vitro and in vivo. Notably, the PICasSO toolbox was developed in a design-build-test-learn engineering cycle closely intertwining wet lab experiments and computational modeling and iterated several times, yielding a collection of well-functioning and -characterized parts.
At its heart, the PICasSO part collection consists of three categories.
(i) Our DNA-binding
proteins
include our
finalized Cas staple experimentally validated using an artificial "enhancer hijacking" system as well as
"half staples" that can be combined by scientists to compose entirely
new Cas staples in the future. We also include our Simple staples comprised of particularly small, simple
and robust DNA binding domains well-known to the synthetic biology community, which serve as controls for
successful stapling
and can be further engineered to create alternative, simpler, and more compact staples.
(ii) As functional elements, we list additional parts that enhance and expand the
functionality of our Cas and
Basic staples. These
consist of staples dependent on
cleavable peptide linkers targeted by cancer-specific proteases or inteins that allow condition-specific,
dynamic stapling in vivo.
We also include several engineered parts that enable the efficient delivery of PICasSO's constructs into
target cells, including mammalian cells,
with our new
interkingdom conjugation system.
(iii) As the final category of our collection, we provide parts that underlie our custom
readout
systems. These include components of our established FRET-based proximity assay system, enabling
users to
confirm
accurate stapling. Additionally, we offer a complementary, application-oriented testing system based on a
luciferase reporter, which allows for straightforward experimental assessment of functional enhancer
hijacking events
in mammalian cells.
The following table gives a comprehensive overview of all parts in our PICasSO toolbox. The highlighted parts showed
exceptional performance as described on our iGEM wiki and can serve as a reference. The other
parts in
the
collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer
their
own custom Cas staples, enabling further optimization and innovation in the new field of 3D genome
engineering.
Our part collection includes:
DNA-Binding Proteins: Modular building blocks for engineering of custom staples to mediate defined DNA-DNA interactions in vivo | ||
BBa_K5237000 | Fusion Guide RNA Entry Vector MbCas12a-SpCas9 | Entry vector for simple fgRNA cloning via SapI |
BBa_K5237001 | Staple Subunit: dMbCas12a-Nucleoplasmin NLS | Staple subunit that can be combined with crRNA or fgRNA and dSpCas9 to form a functional staple |
BBa_K5237002 | Staple Subunit: SV40 NLS-dSpCas9-SV40 NLS | Staple subunit that can be combined with a sgRNA or fgRNA and dMbCas12a to form a functional staple |
BBa_K5237003 | Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS | Functional Cas staple that can be combined with sgRNA and crRNA or fgRNA to bring two DNA strands into close proximity |
BBa_K5237004 | Staple Subunit: Oct1-DBD | Staple subunit that can be combined to form a functional staple, for example with TetR. Can also be combined with a fluorescent protein as part of the FRET proximity assay |
BBa_K5237005 | Staple Subunit: TetR | Staple subunit that can be combined to form a functional staple, for example with Oct1. Can also be combined with a fluorescent protein as part of the FRET proximity assay |
BBa_K5237006 | Simple Staple: TetR-Oct1 | Functional staple that can be used to bring two DNA strands in close proximity |
BBa_K5237007 | Staple Subunit: GCN4 | Staple subunit that can be combined to form a functional staple, for example with rGCN4 |
BBa_K5237008 | Staple Subunit: rGCN4 | Staple subunit that can be combined to form a functional staple, for example with rGCN4 |
BBa_K5237009 | Mini Staple: bGCN4 | Assembled staple with minimal size that can be further engineered | Functional Elements: Protease-cleavable peptide linkers and inteins are used to control and modify staples for further optimization for custom applications |
BBa_K5237010 | Cathepsin B-cleavable Linker: GFLG | Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make responsive staples |
BBa_K5237011 | Cathepsin B Expression Cassette | Expression cassette for the overexpression of cathepsin B |
BBa_K5237012 | Caged NpuN Intein | A caged NpuN split intein fragment that undergoes protein trans-splicing after protease activation, which can be used to create functionalized staple subunits |
BBa_K5237013 | Caged NpuC Intein | A caged NpuC split intein fragment that undergoes protein trans-splicing after protease activation, which can be used to create functionalized staple subunits |
BBa_K5237014 | Fusion Guide RNA Processing Casette | Processing cassette to produce multiple fgRNAs from one transcript, that can be used for multiplexed 3D genome reprogramming |
BBa_K5237015 | Intimin anti-EGFR Nanobody | Interkingdom conjugation between bacteria and mammalian cells, as an alternative delivery tool for large constructs |
BBa_K4643003 | IncP Origin of Transfer | Origin of transfer that can be cloned into the plasmid vector and used for conjugation as a means of delivery | Readout Systems: FRET and enhancer recruitment readout systems to rapidly assess successful DNA stapling in bacterial and mammalian cells |
BBa_K5237016 | FRET-Donor: mNeonGreen-Oct1 | FRET donor-fluorophore fused to Oct1-DBD that binds to the Oct1 binding cassette, which can be used to visualize DNA-DNA proximity |
BBa_K5237017 | FRET-Acceptor: TetR-mScarlet-I | Acceptor part for the FRET assay binding the TetR binding cassette, which can be used to visualize DNA-DNA proximity |
BBa_K5237018 | Oct1 Binding Casette | DNA sequence containing 12 Oct1 binding motifs, compatible with various assays such as the FRET proximity assay |
BBa_K5237019 | TetR Binding Cassette | DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the FRET proximity assay | BBa_K5237020 | Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64 | Readout system that responds to protease activity, which was used to test cathepsin B-cleavable linker |
BBa_K5237021 | NLS-Gal4-VP64 | Trans-activating enhancer, that can be used to simulate enhancer hijacking | BBa_K5237022 | mCherry Expression Cassette: UAS, minimal Promoter, mCherry | Readout system for enhancer binding, which was used to test cathepsin B-cleavable linker |
BBa_K5237023 | Oct1 - 5x UAS Binding Casette | Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay |
BBa_K5237024 | TRE-minimal Promoter- Firefly Luciferase | Contains firefly luciferase controlled by a minimal promoter, which was used as a luminescence readout for simulated enhancer hijacking |
1. Sequence Overview
- 10INCOMPATIBLE WITH RFC[10]Illegal PstI site found at 274
Illegal PstI site found at 295
Illegal PstI site found at 607
Illegal PstI site found at 1762
Illegal PstI site found at 3049
Illegal PstI site found at 3324 - 12INCOMPATIBLE WITH RFC[12]Illegal PstI site found at 274
Illegal PstI site found at 295
Illegal PstI site found at 607
Illegal PstI site found at 1762
Illegal PstI site found at 3049
Illegal PstI site found at 3324 - 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 2225
Illegal BglII site found at 2351
Illegal BglII site found at 2858
Illegal BglII site found at 2904
Illegal BglII site found at 2951
Illegal BglII site found at 3227
Illegal BglII site found at 3311 - 23INCOMPATIBLE WITH RFC[23]Illegal PstI site found at 274
Illegal PstI site found at 295
Illegal PstI site found at 607
Illegal PstI site found at 1762
Illegal PstI site found at 3049
Illegal PstI site found at 3324 - 25INCOMPATIBLE WITH RFC[25]Illegal PstI site found at 274
Illegal PstI site found at 295
Illegal PstI site found at 607
Illegal PstI site found at 1762
Illegal PstI site found at 3049
Illegal PstI site found at 3324
Illegal NgoMIV site found at 355
Illegal NgoMIV site found at 787
Illegal NgoMIV site found at 1354
Illegal NgoMIV site found at 1432
Illegal NgoMIV site found at 2404
Illegal NgoMIV site found at 3305
Illegal NgoMIV site found at 3789 - 1000COMPATIBLE WITH RFC[1000]
In 2012, Jinek et al. discovered the use of the Clustered Regularly Interspaced Short Palindromic Repeats
(CRISPR)/Cas system to induce double-strand breaks in DNA. Since then, the system has been well established as a
tool for genome editing. The CRISPR/Cas system, which originates from the bacterial immune system, is constituted
by a ribonucleoprotein complex. For class 1 CRISPR systems, the RNA is complexed by multiple Cas proteins, whereas
class 2 systems consist of a singular protein and RNA. The class 2 type II system describes all ribonucleoprotein
complexes with Cas9 (Pacesa et al., 2024). They include a CRISPR RNA (crRNA), which specifies the target with
a 20
nucleotide (nt) spacer sequence, and a transactivating CRISPR RNA (tracrRNA), which induces the processing by the
Cas protein (Jinek et al., 2012) (Figure 2 A). Furthermore, a specific three
nucleotide sequence (NGG) on the 3' end in the targeted DNA is needed for binding and cleavage. This is referred
to as the protospacer adjacent motif (PAM) (Sternberg et al., 2014). The most commonly used Cas9 protein is
SpCas9
or SpyCas9, which originates from Streptococcus pyogenes (Pacesa et al., 2024).
2. Usage and Biology
3. Assembly and Part Evolution
3.1 Qualitatively Assessing Gene Editing of Cas12a Orthologs
To select a suitable Cas12a ortholog for constructing the Cas staples, three different orthologs were ordered
from Addgene:
AsCas12a (#69982), LbCas12a (#69988),
and MbCas12a (#115142).
We assessed their performance using a T7 Endonuclease I (T7EI) assay on three genomic loci: RUNX1, DNMT1, and
FANCF. For
comparison, we also included SpCas9 editing the CCR5 locus (Fig. 3). Editing was only observed at the
RUNX1 locus, where we used the qualitative assay to compare the editing efficiencies of the Cas12a orthologs.
3.2 Quantitative Comparison Between AsCas12a and MbCas12a
Since the T7EI assay can only be used to qualitatively compare editing efficiencies, it was hard to distinguish
between the better editing ortholog.
To accurately quantify the editing efficiency, we conducted a dual luciferase assay. This assay measures the
luminescence
of firefly luciferase, which decreases proportionally to the editing efficiency at the target site.
To account for variations in cell count and transfection efficiency, the luminescence is normalized
to Renilla luciferase, which acts as an internal control (Fig. 4).
The results revealed a clear difference, with MbCas12a demonstrating significantly higher editing efficiency
compared to
AsCas12a (p=0.005). Based on these findings, we decided to proceed with MbCas12a.
3.3 Multiplex Gene Editing Using MbCas12a and SpCas9
To employ the MbCas12a as part of a Cas staple, we sought to determine MbCas12a's activity while being transfected together with SpCas9. Therefore we engineered the dual luciferase assay to allow us for testing two catalytically active Cas proteins at once. Including a well established protospacer, CCR5, into the renilla luciferase gene enables us to test the editing rates of two Cas proteins simultaneously (Fig. 5).
For the MbCas12a we have a highly significant editing rate in the single cut, meaning both Cas proteins are transfected, but only MbCas12a has a targeting gRNA. When introducing a targeting gRNA for SpCas9 we did not observe reduction in the highly significant editing of MbCas12a, strongly suggesting both Cas proteins to be able to edit simultaneously.
3.4 Fusion Guide RNA Enabled Editing with MbCas12a
To further confirm that MbCas12a can be combined with fgRNAs in a functional Cas staple, editing rates were tested
using a fusion guide RNA
(fgRNA, BBa_K5237000)
targeting two different loci: FANCF and VEGFA. To better assess the impact that the utilization of a
fgRNA has on the editing rates, the sgRNAs were tested separately and in one sample.
Having the sgRNA with single Cas proteins in the same sample resulted in no clear
difference in the editing rates (Fig. 6). The fusion of the gRNAs resulted in a lower editing rate
overall. While the editing for VEGFA stayed at about 20% in all
cases, the editing for FANCF dropped significantly. Nonetheless we were able to show MbCas12a editing utilizing a
fgRNA.
To further assess the effect of the genomic locus on the editing rate, we included CCR5 as an additional gene target. For this assay, a fgRNA with a 20 nt long linker was included between the two spacers. The editing rate for VEGFA was again relatively consistent throughout the samples (Fig. 7).
3.5 Establishing Functional Fusion Cas Proteins with MbCas12a and SpCas9
Testing showed simultaneous editing of MbCas12a and SpCas9. Therefore we wanted to test protein-protein fusion, potentially giving us another way of Cas stapling. Our goal was to find out how well MbCas12a can stay active while being fused to SpCas9. Therefore we employed the previously engineered dual luciferase assay to allow us for testing two catalytically active Cas proteins at once, this time being fused to each other (Fig. 8).
For the MbCas12a we have a highly significant editing rate in the single cut, meaning only MbCas12a has a targeting gRNA. When introducing a targeting gRNA for SpCas9 we see no reduction in the highly significant editing of MbCas12a, strongly suggesting both Cas proteins in the fusion Cas to be able to edit simultaneously.
3.6 The Combination of Fusion Guide RNAs and Fusion Cas Proteins
The gene editing efficiency of MbCas12a in the fusion Cas was tested by assessing the editing rates via a T7EI
assay. For this, the
same target sequences as before were used, namely FANCF and VEGFA in both configurations. We included biological
duplicates in this assay.
MbCas12a editing rates were significantly lower, dropping to about 1%. At the same time, when targeting VEGFA they
resulted in a higher editing efficiency than FANCF.
4. Results
We extensively characterized the catalytically active MbCas12a in several assays determining the best ortholog out
of
three for our Cas staples, assert functional editing with a fusion guide RNA (BBa_K5237000), showing high activity
while being co-transfected with SpCas9, our second staple protein's active version, and lastly a functioning fusion
to
SpCas9.
After all these successful test we were confident to test the Cas staples in action.
4.1 dMbCas12a as Part of a Cas Staple Establishes DNA-DNA Proximity
The next step was to use the MbCas12a as part of a Cas staple to bring two DNA loci together, and thereby induce proximity between two separate functional elements. Mimicking the phenomenon of enhancer hijacking, in which an enhancer activates an otherwise distant promoter, we constructed artificial enhancer and reporter plasmids. The reporter plasmid encodes a firefly luciferase downstream of several repeats of a Cas9 targeted sequence. The enhancer plasmid has a Gal4 binding site behind several repeats of a Cas12a targeted sequence. By introducing a fgRNA staple and a Gal4-VP64, expression of the luciferase is induced (Fig. 10A). Different linker lengths were tested. Cells were again normalized against ubiquitous renilla expression. Further information on our learnings from this assay can be found in the Cas staple engineering cycle iteration 2. Using no linker between the two spacers showed similar relative luciferase activity to the baseline control (Fig. 10B). An extension of the linker from 20 nt up to 40 nt resulted in an increasingly higher expression of the reporter gene.
5. References
Kampmann, M. (2017). CRISPRi and CRISPRa Screens in Mammalian Cells for Precision Biology and Medicine. ACS Chemical Biology, 13, 406–416. https://doi.org/10.1021/acschembio.7b00657.
Kleinstiver, B. P., Sousa, A. A., Walton, R. T., Tak, Y. E., Hsu, J. Y., Clement, K., Welch, M. M., Horng, J. E., Malagon-Lopez, J., Scarfò, I., Maus, M. V., Pinello, L., Aryee, M. J., and Joung, J. K. (2019). Engineered CRISPR–Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nature Biotechnology, 37, 276–282. https://doi.org/10.1038/s41587-018-0011-0.
Koonin, E. V., Gootenberg, J. S., and Abudayyeh, O. O. (2023). Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering Toolbox. Biochemistry, 62, 3465–3487. https://doi.org/10.1021/acs.biochem.3c00159.
Pacesa, M., Pelea, O., and Jinek, M. (2024). Past, present, and future of CRISPR genome editing technologies. Cell, 187, 1076–1100. https://doi.org/10.1016/j.cell.2024.01.042.
Paul, B., and Montoya, G. (2020). CRISPR-Cas12a: Functional overview and applications. Biomedical Journal, 43, 8–17. https://doi.org/10.1016/j.bj.2019.10.005.
Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P., Volz, S. E., Joung, J., van der Oost, J., Regev, A., Koonin, E. V., and Zhang, F. (2015). Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell, 163, 759–771. https://doi.org/10.1016/j.cell.2015.09.038.