Difference between revisions of "Part:BBa K5237000"

Line 3: Line 3:
 
<html>
 
<html>
 
<style>
 
<style>
    p {
+
  p {
        text-align: justify;
+
    text-align: justify;
        margin-right: 25px;
+
    margin-right: 25px;
        font-style: normal;
+
    font-style: normal;
    }
+
  }
  
    section {
+
  section {
        margin-left: 25px;
+
    margin-left: 25px;
        margin-right: 25px;
+
    margin-right: 25px;
        margin-top: 25px;
+
    margin-top: 25px;
    }
+
  }
  
    .thumb {
+
  .thumb {
        width: 100%;
+
    width: 100%;
    }
+
  }
  
    table,
+
  table,
    th,
+
  th,
    td {
+
  td {
        border: 0.5px solid black;
+
    border: 0.5px solid black;
        border-collapse: collapse;
+
    border-collapse: collapse;
        padding: 5px;
+
    padding: 5px;
    }
+
  }
  
    .thumbcaption {
+
  .thumbcaption {
        text-align: justify !important;
+
    text-align: justify !important;
    }
+
  }
  
  
    a[href ^="https://"],
+
  a[href ^="https://"],
    .link-https {
+
  .link-https {
        background: none !important;
+
    background: none !important;
        padding-right: 0px !important;
+
    padding-right: 0px !important;
    }
+
  }
</style>
+
  
 +
</style>
 
<body>
 
<body>
    <!-- Part summary -->
+
<!-- Part summary -->
    <section id="1">
+
<section id="1">
        <h1>fgRNA Entry Vector MbCas12a-SpCas9</h1>
+
<h1>fgRNA Entry Vector MbCas12a-SpCas9</h1>
        <p>
+
<p>
             This part integrates the crRNA of MbCas12a (<a
+
             This part integrates the crRNA of MbCas12a (<a href="https://parts.igem.org/Part:BBa_K5237206">BBa_K5237206</a>) and the sgRNA of SpCas9 (<a href="https://parts.igem.org/Part:BBa_K5237209">BBa_K5237209</a>) into a single
                href="https://parts.igem.org/Part:BBa_K5237206">BBa_K5237206</a>) and the sgRNA of SpCas9 (<a
+
                href="https://parts.igem.org/Part:BBa_K5237209">BBa_K5237209</a>) into a single
+
 
             fusion
 
             fusion
             guide RNA (fgRNA). The fgRNA is functional, meaning that the MbCas12a (<a
+
             guide RNA (fgRNA). The fgRNA is functional, meaning that the MbCas12a (<a href="https://parts.igem.org/Part:BBa_K5237001">BBa_K5237001</a>),
                href="https://parts.igem.org/Part:BBa_K5237001">BBa_K5237001</a>),
+
             SpCas9 (<a href="https://parts.igem.org/Part:BBa_K5237002">BBa_K5237002</a>) and the fusion dCas (<a href="https://parts.igem.org/Part:BBa_K5237003">BBa_K5237003</a>)
             SpCas9 (<a href="https://parts.igem.org/Part:BBa_K5237002">BBa_K5237002</a>) and the fusion dCas (<a
+
                href="https://parts.igem.org/Part:BBa_K5237003">BBa_K5237003</a>)
+
 
             can both utilize the fgRNA to target two different loci simultaneously. The fgRNA also works in combination
 
             can both utilize the fgRNA to target two different loci simultaneously. The fgRNA also works in combination
             with the catalyitcally inactive dCas9 and dCas12a
+
             with the catalytically inactive dCas9 and dCas12a
 
             versions.
 
             versions.
 
             We successfully showed genome editing at two different loci simultaneously using active SpCas9 and Cas12a
 
             We successfully showed genome editing at two different loci simultaneously using active SpCas9 and Cas12a
             and induced proximity of two genomic loci with the catalytically inactive dSpCas9 and dMbCas12a.<br />
+
             and induced proximity of two genomic loci with the catalytically inactive dSpCas9 and dMbCas12a.<br/>
 
             For our part collection, the PICasSO toolbox, this part is the central key, since it enables to the
 
             For our part collection, the PICasSO toolbox, this part is the central key, since it enables to the
 
             formation of our CRISPR/Cas staples - trimeric complexes comprised of a fgRNA, dCas9 and dCas12a employed
 
             formation of our CRISPR/Cas staples - trimeric complexes comprised of a fgRNA, dCas9 and dCas12a employed
 
             for tethering two distinct genomic loci for 3D genome engineering.
 
             for tethering two distinct genomic loci for 3D genome engineering.
 
         </p>
 
         </p>
        <p> </p>
+
<p> </p>
    </section>
+
</section>
    <div class="toc" id="toc">
+
<div class="toc" id="toc">
        <div id="toctitle">
+
<div id="toctitle">
            <h1>Contents</h1>
+
<h1>Contents</h1>
        </div>
+
</div>
        <ul>
+
<ul>
            <li class="toclevel-1 tocsection-1"><a href="#1"><span class="tocnumber">1</span> <span
+
<li class="toclevel-1 tocsection-1"><a href="#1"><span class="tocnumber">1</span> <span class="toctext">Sequence
                        class="toctext">Sequence
+
 
                         overview</span></a>
 
                         overview</span></a>
            </li>
+
</li>
            <li class="toclevel-1 tocsection-2"><a href="#2"><span class="tocnumber">2</span> <span
+
<li class="toclevel-1 tocsection-2"><a href="#2"><span class="tocnumber">2</span> <span class="toctext">Usage and
                        class="toctext">Usage and
+
 
                         Biology</span></a>
 
                         Biology</span></a>
                <ul>
+
<ul>
                    <li class="toclevel-2 tocsection-2.1">
+
<li class="toclevel-2 tocsection-2.1">
                        <a href="#2.1"><span class="tocnumber">2.1</span> <span class="toctext">Discovery and Mechanism
+
<a href="#2.1"><span class="tocnumber">2.1</span> <span class="toctext">Discovery and Mechanism
 
                                 of
 
                                 of
 
                                 CRISPR/Cas9</span></a>
 
                                 CRISPR/Cas9</span></a>
                    </li>
+
</li>
                    <li class="toclevel-2 tocsection-2.2">
+
<li class="toclevel-2 tocsection-2.2">
                        <a href="#2.2"><span class="tocnumber">2.2</span> <span class="toctext">Differences between Cas9
+
<a href="#2.2"><span class="tocnumber">2.2</span> <span class="toctext">Differences between Cas9
 
                                 and
 
                                 and
 
                                 Cas12a</span></a>
 
                                 Cas12a</span></a>
                    </li>
+
</li>
                    <li class="toclevel-2 tocsection-2.3">
+
<li class="toclevel-2 tocsection-2.3">
                        <a href="#2.3"><span class="tocnumber">2.3</span> <span class="toctext">Dead Cas Proteins and
+
<a href="#2.3"><span class="tocnumber">2.3</span> <span class="toctext">Dead Cas Proteins and
 
                                 their
 
                                 their
 
                                 Application</span></a>
 
                                 Application</span></a>
                    </li>
+
</li>
                    <li class="toclevel-2 tocsection-2.4">
+
<li class="toclevel-2 tocsection-2.4">
                        <a href="#2.4"><span class="tocnumber">2.4</span> <span class="toctext">fgRNA and CHyMErA
+
<a href="#2.4"><span class="tocnumber">2.4</span> <span class="toctext">fgRNA and CHyMErA
 
                                 System</span></a>
 
                                 System</span></a>
                    </li>
+
</li>
                </ul>
+
</ul>
            </li>
+
</li>
            <li class="toclevel-1 tocsetction-3"><a href="#3"><span class="tocnumber">3</span> <span
+
<li class="toclevel-1 tocsetction-3"><a href="#3"><span class="tocnumber">3</span> <span class="toctext">Assembly
                        class="toctext">Assembly
+
 
                         and part evolution</span></a>
 
                         and part evolution</span></a>
            </li>
+
</li>
            <li class="toclevel-1 tocsection-4"><a href="#4"><span class="tocnumber">4</span> <span
+
<li class="toclevel-1 tocsection-4"><a href="#4"><span class="tocnumber">4</span> <span class="toctext">Results</span></a>
                        class="toctext">Results</span></a>
+
<ul>
                <ul>
+
<li class="toclevel-2 tocsection-4.1">
                    <li class="toclevel-2 tocsection-4.1">
+
<a href="#4.1"><span class="tocnumber">4.1</span> <span class="toctext">Editing endogenous loci
                        <a href="#4.1"><span class="tocnumber">4.1</span> <span class="toctext">Editing endogenous loci
+
 
                                 with
 
                                 with
 
                                 fgRNAs</span></a>
 
                                 fgRNAs</span></a>
                    </li>
+
</li>
                    <li class="toclevel-2 tocsection-4.2">
+
<li class="toclevel-2 tocsection-4.2">
                        <a href="#4.2"><span class="tocnumber">4.2</span> <span class="toctext">Proximity assay with
+
<a href="#4.2"><span class="tocnumber">4.2</span> <span class="toctext">Proximity assay with
 
                                 inactive Cas
 
                                 inactive Cas
 
                                 proteins</span></a>
 
                                 proteins</span></a>
                    </li>
+
</li>
                    <li class="toclevel-2 tocsection-4.3">
+
<li class="toclevel-2 tocsection-4.3">
                        <a href="#4.3"><span class="tocnumber">4.3</span> <span class="toctext">The Inclusion of a
+
<a href="#4.3"><span class="tocnumber">4.3</span> <span class="toctext">The Inclusion of a
 
                                 Linker Does Not
 
                                 Linker Does Not
 
                                 Lower Editing Rates</span></a>
 
                                 Lower Editing Rates</span></a>
                    </li>
+
</li>
                    <li class="toclevel-2 tocsection-4.4">
+
<li class="toclevel-2 tocsection-4.4">
                        <a href="#4.4"><span class="tocnumber">4.4</span> <span class="toctext">fgRNAs can be Used for
+
<a href="#4.4"><span class="tocnumber">4.4</span> <span class="toctext">fgRNAs can be Used for
 
                                 CRISPRa</span></a>
 
                                 CRISPRa</span></a>
                    </li>
+
</li>
                    <li class="toclevel-2 tocsection-4.5">
+
<li class="toclevel-2 tocsection-4.5">
                        <a href="#4.5"><span class="tocnumber">4.5</span> <span class="toctext">Stapling Two DNA Strands
+
<a href="#4.5"><span class="tocnumber">4.5</span> <span class="toctext">Stapling Two DNA Strands
 
                                 Together
 
                                 Together
 
                                 Using fgRNAs</span></a>
 
                                 Using fgRNAs</span></a>
                    </li>
+
</li>
                </ul>
+
</ul>
            </li>
+
</li>
            <li class="toclevel-1 tocsection-8"><a href="#5"><span class="tocnumber">5</span> <span
+
<li class="toclevel-1 tocsection-8"><a href="#5"><span class="tocnumber">5</span> <span class="toctext">References</span></a>
                        class="toctext">References</span></a>
+
</li>
            </li>
+
</ul>
        </ul>
+
</div>
    </div>
+
<section><p><br/><br/></p>
    <section>
+
<font size="5"><b>The PICasSO Toolbox </b> </font>
        <p><br /><br /></p>
+
<div class="thumb" style="margin-top:10px;"></div>
        <font size="5"><b>The PICasSO Toolbox </b> </font>
+
<div class="thumbinner" style="width:550px"><img alt="" class="thumbimage" src="https://static.igem.wiki/teams/5237/wetlab-results/registry-part-collection-engineering-cycle-example-overview.svg" style="width:99%;"/>
        <div class="thumb" style="margin-top:10px;"></div>
+
<div class="thumbcaption">
        <div class="thumbinner" style="width:550px"><img alt="" class="thumbimage"
+
<i><b>Figure 1: How our part collection can be used to engineer new staples</b></i>
                src="https://static.igem.wiki/teams/5237/wetlab-results/registry-part-collection-engineering-cycle-example-overview.svg"
+
</div>
                style="width:99%;" />
+
</div>
            <div class="thumbcaption">
+
<p>
                <i><b>Figure 1: How our part collection can be used to engineer new staples</b></i>
+
<br/>
            </div>
+
      While synthetic biology has in the past focused on engineering the genomic sequence of organisms, the <b>3D
        </div>
+
        spatial organization</b> of DNA is well-known to be an important layer of information encoding in
 
+
      particular in eukaryotes, playing a crucial role in
        <p>
+
      gene regulation and hence
            <br />
+
      cell fate, disease development, evolution, and more. However, tools to precisely manipulate and control the
            While synthetic biology has in the past focused on engineering the genomic sequence of organisms, the <b>3D
+
      genomic spatial
                spatial organization</b> of DNA is well-known to be an important layer of information encoding in
+
      architecture are limited, hampering the exploration of
            particular in eukaryotes, playing a crucial role in
+
      3D genome engineering in synthetic biology. We - the iGEM Team Heidelberg 2024 - have developed PICasSO, a
            gene regulation and hence
+
      <b>powerful
            cell fate, disease development, evolution and more. However, tools to precisely manipulate and control the
+
        molecular toolbox for rationally engineering genome 3D architectures</b> in living cells, based on
            genomic spatial
+
      various DNA-binding proteins.
            architecture are limited, hampering the exploration of
+
    </p>
            3D genome engineering in synthetic biology. We - the iGEM Team Heidelberg 2024 - have developed PICasSO, a
+
<p>
            <b>powerful
+
      The <b>PICasSO</b> part collection offers a comprehensive, modular platform for precise manipulation and
                molecular toolbox for rationally engineering genome 3D architectures</b> in living cells, based on
+
      <b>re-programming
            various DNA-binding proteins.
+
        of DNA-DNA interactions</b> using engineered "protein staples" in living cells. This enables
        </p>
+
      researchers to recreate naturally occurring alterations of 3D genomic
        <p>
+
      interactions, such as enhancer hijacking in cancer, or to design entirely new spatial architectures for
            The <b>PICasSO</b> part collection offers a comprehensive, modular platform for precise manipulation and
+
      artificial gene regulation and cell function control.
            <b>re-programming
+
      Specifically, the fusion of two DNA binding proteins enables to artificially bring otherwise distant genomic
                of DNA-DNA interactions</b> using engineeered "protein staples" in living cells. This enables
+
      loci into
            researchers to recreate naturally occuring alterations of 3D genomic
+
      spatial proximity.
            interactions, such as enhancer hijacking in cancer, or to design entirely new spatial architectures for
+
      To unlock the system's full potential, we introduce versatile <b>chimeric CRISPR/Cas complexes</b>,
            artifical gene regulation and cell function control.
+
      connected either at
            Specifically, the fusion of two DNA binding proteins enables to artifically bring otherwise distant genomic
+
      the protein or - in the case of CRISPR/Cas-based DNA binding moieties - the guide RNA level. These complexes are
            loci into
+
      referred to as protein- or Cas staples, respectively. Beyond its
            spatial proximty.
+
      versatility with regard to the staple constructs themselves, PICasSO includes <b>robust assay</b> systems to
            To unlock the system's full potential, we introduce versatile <b>chimeric CRISPR/Cas complexes</b>,
+
      support the engineering, optimization, and
            connected either at
+
      testing of new staples <i>in vitro</i> and <i>in vivo</i>. Notably, the PICasSO toolbox was developed in a
            the protein or - in case of CRISPR-Cas-based DNA binding moieties - the guide RNA level. These complexes are
+
      design-build-test-learn <b>engineering cycle closely intertwining wet lab experiments and computational
            reffered to as protein- or Cas staples, respectively. Beyond its
+
        modeling</b> and iterated several times, yielding a collection of well-functioning and -characterized
            versatility with regard to the staple constructs themselves, PICasSO includes <b>robust assay</b> systems to
+
      parts.
            support the engineering, optimization, and
+
    </p>
            testing of new staples <i>in vitro</i> and <i>in vivo</i>. Notably, the PICasSO toolbox was developed in an
+
<p>At its heart, the PICasSO part collection consists of three categories. <br/><b>(i)</b> Our <b>DNA-binding
            design-build-test-learn <b>engineering cycle closely intertwining wet-lab experiments and computational
+
        proteins</b>
                modeling</b> and iterated several times, yielding a collection of well-functioning and -characterized
+
      include our
            parts.
+
      finalized Cas staple experimentally validated using an artificial "enhancer hijacking" system as well as
        </p>
+
      "half staples" that can be combined by scientists to compose entirely
        <p>At its heart, the PICasSO part collection consists of three categories. <br /><b>(i)</b> Our <b>DNA-binding
+
      new Cas staples in the future. We also include our Simple staples comprised of particularly small, simple
                proteins</b>
+
      and robust DNA binding domains well-known to the synthetic biology community, which serve as controls for
            include our
+
      successful stapling
            finalized Cas staple experimentally validated using an artificial "enhancer hijacking" system as well as
+
      and can be further engineered to create alternative, simpler, and more compact staples. <br/>
            "half staples" that can be combined by scientists to compose entirely
+
<b>(ii)</b> As <b>functional elements</b>, we list additional parts that enhance and expand the
            new Cas staples in the future. We also include our Simple staples comprised of particularly small, simple
+
      functionality of our Cas and
            and robust DNA bindig domains well-known to the synthetic biology community, which serve as controls for
+
      Basic staples. These
            successful stapling
+
      consist of staples dependent on
            and can be further engineered to create alternative, simpler and more compact staples. <br />
+
      cleavable peptide linkers targeted by cancer-specific proteases or inteins that allow condition-specific,
            <b>(ii)</b> As <b>functional elements</b>, we list additional parts that enhance and expand the
+
      dynamic stapling <i>in vivo</i>.
            functionality of our Cas and
+
      We also include several engineered parts that enable the efficient delivery of PICasSO's constructs into
            Basic staples. These
+
      target cells, including mammalian cells,
            consist of staples dependent on
+
      with our new
            cleavable peptide linkers targeted by cancer-specific proteases or inteins that allow condition-specific,
+
      interkingdom conjugation system. <br/>
            dynamic stapling <i>in vivo</i>.
+
<b>(iii)</b> As the final category of our collection, we provide parts that underlie our <b>custom
            We also include several engineered parts that enable the efficient delivery of PICasSO's constructs into
+
        readout
            target cells, including mammalian cells,
+
        systems</b>. These include components of our established FRET-based proximity assay system, enabling
            with our new
+
      users to
            interkingdom conjugation system. <br />
+
      confirm
            <b>(iii)</b> As the final category of our collection, we provide parts that underlie our <b>custom
+
      accurate stapling. Additionally, we offer a complementary, application-oriented testing system based on a
                readout
+
      luciferase reporter, which allows for straightforward experimental assessment of functional enhancer
                systems</b>. These include components of our established FRET-based proximity assay system, enabling
+
      hijacking events
            users to
+
      in mammalian cells.
            confirm
+
    </p>
            accurate stapling. Additionally, we offer a complementary, application-oriented testing system based on a
+
<p>
            luciferase reporter, which allows for straightforward experimental assessment of functional enhancer
+
      The following table gives a comprehensive overview of all parts in our PICasSO toolbox. <mark style="background-color: #FFD700; color: black;">The highlighted parts showed
            hijacking events
+
        exceptional performance as described on our iGEM wiki and can serve as a reference.</mark> The other
            in mammalian cells.
+
      parts in
        </p>
+
      the
        <p>
+
      collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer
            The following table gives a comprehensive overview of all parts in our PICasSO toolbox. <mark
+
      their
                style="background-color: #FFD700; color: black;">The highlighted parts showed
+
      own custom Cas staples, enabling further optimization and innovation in the new field of 3D genome
                exceptional performance as described on our iGEM wiki and can serve as a reference.</mark> The other
+
      engineering.<br/>
            parts in
+
</p>
            the
+
<p>
            collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer
+
<font size="4"><b>Our part collection includes:</b></font><br/>
            their
+
</p>
            own custom Cas staples, enabling further optimization and innovation in the new field of 3D genome
+
<table style="width: 90%; padding-right:10px;">
            engineering.<br />
+
<td align="left" colspan="3"><b>DNA-Binding Proteins: </b>
        </p>
+
        Modular building blocks for engineering of custom staples to mediate defined DNA-DNA interactions <i>in vivo</i></td>
        <p>
+
<tbody>
            <font size="4"><b>Our part collection includes:</b></font><br />
+
<tr bgcolor="#FFD700">
        </p>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237000" target="_blank">BBa_K5237000</a></td>
        <table style="width: 90%; padding-right:10px;">
+
<td>Fusion Guide RNA Entry Vector MbCas12a-SpCas9</td>
            <td align="left" colspan="3"><b>DNA-binding proteins: </b>
+
<td>Entry vector for simple fgRNA cloning via SapI</td>
                Modular building blocks for engineering of custom staples to mediate defined DNA-DNA interactions in
+
</tr>
                vivo</td>
+
<tr bgcolor="#FFD700">
            <tbody>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237001" target="_blank">BBa_K5237001</a></td>
                <tr bgcolor="#FFD700">
+
<td>Staple Subunit: dMbCas12a-Nucleoplasmin NLS</td>
                    <td><a href="https://parts.igem.org/Part:BBa_K5237000" target="_blank">BBa_K5237000</a></td>
+
<td>Staple subunit that can be combined with crRNA or fgRNA and dSpCas9 to form a functional staple
                    <td>fgRNA Entry vector MbCas12a-SpCas9</td>
+
          </td>
                    <td>Entryvector for simple fgRNA cloning via SapI</td>
+
</tr>
                </tr>
+
<tr bgcolor="#FFD700">
                <tr bgcolor="#FFD700">
+
<td><a href="https://parts.igem.org/Part:BBa_K5237002" target="_blank">BBa_K5237002</a></td>
                    <td><a href="https://parts.igem.org/Part:BBa_K5237001" target="_blank">BBa_K5237001</a></td>
+
<td>Staple Subunit: SV40 NLS-dSpCas9-SV40 NLS</td>
                    <td>Staple subunit: dMbCas12a-Nucleoplasmin NLS</td>
+
<td>Staple subunit that can be combined with a sgRNA or fgRNA and dMbCas12a to form a functional staple
                    <td>Staple subunit that can be combined with sgRNA or fgRNA and dCas9 to form a functional staple
+
          </td>
                    </td>
+
</tr>
                </tr>
+
<tr>
                <tr bgcolor="#FFD700">
+
<td><a href="https://parts.igem.org/Part:BBa_K5237003" target="_blank">BBa_K5237003</a></td>
                    <td><a href="https://parts.igem.org/Part:BBa_K5237002" target="_blank">BBa_K5237002</a></td>
+
<td>Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS</td>
                    <td>Staple subunit: SV40 NLS-dSpCas9-SV40 NLS</td>
+
<td>Functional Cas staple that can be combined with sgRNA and crRNA or fgRNA to bring two DNA strands into
                    <td>Staple subunit that can be combined witha sgRNA or fgRNA and dCas12a to form a functional staple
+
            close
                    </td>
+
            proximity
                </tr>
+
          </td>
                <tr>
+
</tr>
                    <td><a href="https://parts.igem.org/Part:BBa_K5237003" target="_blank">BBa_K5237003</a></td>
+
<tr>
                    <td>Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS</td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237004" target="_blank">BBa_K5237004</a></td>
                    <td>Functional Cas staple that can be combined with sgRNA or fgRNA to bring two DNA strands into
+
<td>Staple Subunit: Oct1-DBD</td>
                        close
+
<td>Staple subunit that can be combined to form a functional staple, for example with TetR.<br/>
                        proximity
+
            Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
                    </td>
+
</tr>
                </tr>
+
<tr>
                <tr>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237005" target="_blank">BBa_K5237005</a></td>
                    <td><a href="https://parts.igem.org/Part:BBa_K5237004" target="_blank">BBa_K5237004</a></td>
+
<td>Staple Subunit: TetR</td>
                    <td>Staple subunit: Oct1-DBD</td>
+
<td>Staple subunit that can be combined to form a functional staple, for example with Oct1.<br/>
                    <td>Staple subunit that can be combined to form a functional staple, for example with TetR.<br />
+
            Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
                        Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
+
</tr>
                </tr>
+
<tr>
                <tr>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237006" target="_blank">BBa_K5237006</a></td>
                    <td><a href="https://parts.igem.org/Part:BBa_K5237005" target="_blank">BBa_K5237005</a></td>
+
<td>Simple Staple: TetR-Oct1</td>
                    <td>Staple subunit: TetR</td>
+
<td>Functional staple that can be used to bring two DNA strands in close proximity</td>
                    <td>Staple subunit that can be combined to form a functional staple, for example with Oct1.<br />
+
</tr>
                        Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
+
<tr>
                </tr>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237007" target="_blank">BBa_K5237007</a></td>
                <tr>
+
<td>Staple Subunit: GCN4</td>
                    <td><a href="https://parts.igem.org/Part:BBa_K5237006" target="_blank">BBa_K5237006</a></td>
+
<td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td>
                    <td>Simple staple: TetR-Oct1</td>
+
</tr>
                    <td>Functional staple that can be used to bring two DNA strands in close proximity</td>
+
<tr>
                </tr>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237008" target="_blank">BBa_K5237008</a></td>
                <tr>
+
<td>Staple Subunit: rGCN4</td>
                    <td><a href="https://parts.igem.org/Part:BBa_K5237007" target="_blank">BBa_K5237007</a></td>
+
<td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td>
                    <td>Staple subunit: GCN4</td>
+
</tr>
                    <td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td>
+
<tr>
                </tr>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237009" target="_blank">BBa_K5237009</a></td>
                <tr>
+
<td>Mini Staple: bGCN4</td>
                    <td><a href="https://parts.igem.org/Part:BBa_K5237008" target="_blank">BBa_K5237008</a></td>
+
<td>
                    <td>Staple subunit: rGCN4</td>
+
            Assembled staple with minimal size that can be further engineered</td>
                    <td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td>
+
</tr>
                </tr>
+
</tbody>
                <tr>
+
<td align="left" colspan="3"><b>Functional Elements: </b>
                    <td><a href="https://parts.igem.org/Part:BBa_K5237009" target="_blank">BBa_K5237009</a></td>
+
        Protease-cleavable peptide linkers and inteins are used to control and modify staples for further
                    <td>Mini staple: bGCN4</td>
+
        optimization
                    <td>
+
        for custom applications</td>
                        Assembled staple with minimal size that can be further engineered</td>
+
<tbody>
                </tr>
+
<tr bgcolor="#FFD700">
            </tbody>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237010" target="_blank">BBa_K5237010</a></td>
            <td align="left" colspan="3"><b>Functional elements: </b>
+
<td>Cathepsin B-cleavable Linker: GFLG</td>
                Protease-cleavable peptide linkers and inteins are used to control and modify staples for further
+
<td>Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make
                optimization
+
            responsive
                for custom applications</td>
+
            staples</td>
            <tbody>
+
</tr>
                <tr bgcolor="#FFD700">
+
<tr>
                    <td><a href="https://parts.igem.org/Part:BBa_K5237010" target="_blank">BBa_K5237010</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237011" target="_blank">BBa_K5237011</a></td>
                    <td>Cathepsin B-cleavable Linker: GFLG</td>
+
<td>Cathepsin B Expression Cassette</td>
                    <td>Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make
+
<td>Expression cassette for the overexpression of cathepsin B</td>
                        responsive
+
</tr>
                        staples</td>
+
<tr>
                </tr>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237012" target="_blank">BBa_K5237012</a></td>
                <tr>
+
<td>Caged NpuN Intein</td>
                    <td><a href="https://parts.igem.org/Part:BBa_K5237011" target="_blank">BBa_K5237011</a></td>
+
<td>A caged NpuN split intein fragment that undergoes protein <i>trans</i>-splicing after protease
                    <td>Cathepsin B Expression Cassette</td>
+
            activation, which can be used to create functionalized staple
                    <td>Expression Cassette for the overexpression of cathepsin B</td>
+
            subunits</td>
                </tr>
+
</tr>
                <tr>
+
<tr>
                    <td><a href="https://parts.igem.org/Part:BBa_K5237012" target="_blank">BBa_K5237012</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237013" target="_blank">BBa_K5237013</a></td>
                    <td>Caged NpuN Intein</td>
+
<td>Caged NpuC Intein</td>
                    <td>A caged NpuN split intein fragment that undergoes protein <i>trans</i>-splicing after protease
+
<td>A caged NpuC split intein fragment that undergoes protein <i>trans</i>-splicing after protease
                        activation.
+
            activation, which can be used to create functionalized staple
                        Can be used to create functionalized staples
+
            subunits</td>
                        units</td>
+
</tr>
                </tr>
+
<tr>
                <tr>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237014" target="_blank">BBa_K5237014</a></td>
                    <td><a href="https://parts.igem.org/Part:BBa_K5237013" target="_blank">BBa_K5237013</a></td>
+
<td>Fusion Guide RNA Processing Casette</td>
                    <td>Caged NpuC Intein</td>
+
<td>Processing cassette to produce multiple fgRNAs from one transcript, that can be used for
                    <td>A caged NpuC split intein fragment that undergoes protein <i>trans</i>-splicing after protease
+
            multiplexed 3D
                        activation.
+
            genome reprogramming</td>
                        Can be used to create functionalized staples
+
</tr>
                        units</td>
+
<tr>
                </tr>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237015" target="_blank">BBa_K5237015</a></td>
                <tr>
+
<td>Intimin anti-EGFR Nanobody</td>
                    <td><a href="https://parts.igem.org/Part:BBa_K5237014" target="_blank">BBa_K5237014</a></td>
+
<td>Interkingdom conjugation between bacteria and mammalian cells, as an alternative delivery tool for
                    <td>fgRNA processing casette</td>
+
            large
                    <td>Processing casette to produce multiple fgRNAs from one transcript, that can be used for
+
            constructs</td>
                        multiplexed 3D
+
</tr>
                        genome reprograming</td>
+
<tr>
                </tr>
+
<td><a href="https://parts.igem.org/Part:BBa_K4643003" target="_blank">BBa_K4643003</a></td>
                <tr>
+
<td>IncP Origin of Transfer</td>
                    <td><a href="https://parts.igem.org/Part:BBa_K5237015" target="_blank">BBa_K5237015</a></td>
+
<td>Origin of transfer that can be cloned into the plasmid vector and used for conjugation as a
                    <td>Intimin anti-EGFR Nanobody</td>
+
            means of
                    <td>Interkindom conjugation between bacteria and mammalian cells, as alternative delivery tool for
+
            delivery</td>
                        large
+
</tr>
                        constructs</td>
+
</tbody>
                </tr>
+
<td align="left" colspan="3"><b>Readout Systems: </b>
                <tr>
+
        FRET and enhancer recruitment readout systems to rapidly assess successful DNA stapling in bacterial and
                    <td><a href="https://parts.igem.org/Part:BBa_K4643003" target="_blank">BBa_K4643003</a></td>
+
        mammalian cells
                    <td>incP origin of transfer</td>
+
      </td>
                    <td>Origin of transfer that can be cloned into the plasmid vector and used for conjugation as a
+
<tbody>
                        means of
+
<tr bgcolor="#FFD700">
                        delivery</td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237016" target="_blank">BBa_K5237016</a></td>
                </tr>
+
<td>FRET-Donor: mNeonGreen-Oct1</td>
            </tbody>
+
<td>FRET donor-fluorophore fused to Oct1-DBD that binds to the Oct1 binding cassette, which can be used to
            <td align="left" colspan="3"><b>Readout Systems: </b>
+
            visualize
                FRET and enhancer recruitment readout systems to rapidly assess successful DNA stapling in bacterial and
+
            DNA-DNA
                mammalian cells
+
            proximity</td>
            </td>
+
</tr>
            <tbody>
+
<tr bgcolor="#FFD700">
                <tr bgcolor="#FFD700">
+
<td><a href="https://parts.igem.org/Part:BBa_K5237017" target="_blank">BBa_K5237017</a></td>
                    <td><a href="https://parts.igem.org/Part:BBa_K5237016" target="_blank">BBa_K5237016</a></td>
+
<td>FRET-Acceptor: TetR-mScarlet-I</td>
                    <td>FRET-Donor: mNeonGreen-Oct1</td>
+
<td>Acceptor part for the FRET assay binding the TetR binding cassette, which can be used to visualize
                    <td>FRET Donor-Fluorpohore fused to Oct1-DBD that binds to the Oct1 binding cassette. Can be used to
+
            DNA-DNA
                        visualize
+
            proximity</td>
                        DNA-DNA
+
</tr>
                        proximity</td>
+
<tr>
                </tr>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237018" target="_blank">BBa_K5237018</a></td>
                <tr bgcolor="#FFD700">
+
<td>Oct1 Binding Casette</td>
                    <td><a href="https://parts.igem.org/Part:BBa_K5237017" target="_blank">BBa_K5237017</a></td>
+
<td>DNA sequence containing 12 Oct1 binding motifs, compatible with various assays such as the FRET
                    <td>FRET-Acceptor: TetR-mScarlet-I</td>
+
            proximity assay</td>
                    <td>Acceptor part for the FRET assay binding the TetR binding cassette. Can be used to visualize
+
</tr>
                        DNA-DNA
+
<tr>
                        proximity</td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237019" target="_blank">BBa_K5237019</a></td>
                </tr>
+
<td>TetR Binding Cassette</td>
                <tr>
+
<td>DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the
                    <td><a href="https://parts.igem.org/Part:BBa_K5237018" target="_blank">BBa_K5237018</a></td>
+
            FRET
                    <td>Oct1 Binding Casette</td>
+
            proximity assay</td>
                    <td>DNA sequence containing 12 Oct1 binding motifs, compatible with various assays such as the FRET
+
</tr>
                        proximity assay</td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237020" target="_blank">BBa_K5237020</a></td>
                </tr>
+
<td>Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64</td>
                <tr>
+
<td>Readout system that responds to protease activity, which was used to test cathepsin B-cleavable linker
                    <td><a href="https://parts.igem.org/Part:BBa_K5237019" target="_blank">BBa_K5237019</a></td>
+
        </td>
                    <td>TetR Binding Cassette</td>
+
<tr>
                    <td>DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the
+
<td><a href="https://parts.igem.org/Part:BBa_K5237021" target="_blank">BBa_K5237021</a></td>
                        FRET
+
<td>NLS-Gal4-VP64</td>
                        proximity assay</td>
+
<td>Trans-activating enhancer, that can be used to simulate enhancer hijacking</td>
                </tr>
+
</tr>
                <td><a href="https://parts.igem.org/Part:BBa_K5237020" target="_blank">BBa_K5237020</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237022" target="_blank">BBa_K5237022</a></td>
                <td>Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64</td>
+
<td>mCherry Expression Cassette: UAS, minimal Promoter, mCherry</td>
                <td>Readout system that responds to protease activity. It was used to test cathepsin B-cleavable linker
+
<td>Readout system for enhancer binding, which was used to test cathepsin B-cleavable linker</td>
                </td>
+
<tr>
 
+
<td><a href="https://parts.igem.org/Part:BBa_K5237023" target="_blank">BBa_K5237023</a></td>
                <tr>
+
<td>Oct1 - 5x UAS Binding Casette</td>
                    <td><a href="https://parts.igem.org/Part:BBa_K5237021" target="_blank">BBa_K5237021</a></td>
+
<td>Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay</td>
                    <td>NLS-Gal4-VP64</td>
+
</tr>
                    <td>Trans-activating enhancer, that can be used to simulate enhancer hijacking</td>
+
<tr>
                </tr>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237024" target="_blank">BBa_K5237024</a></td>
                <td><a href="https://parts.igem.org/Part:BBa_K5237022" target="_blank">BBa_K5237022</a></td>
+
<td>TRE-minimal Promoter- Firefly Luciferase</td>
                <td>mCherry Expression Cassette: UAS, minimal Promotor, mCherry</td>
+
<td>Contains firefly luciferase controlled by a minimal promoter, which was used as a luminescence
                <td>Readout system for enhancer binding. It was used to test cathepsin B-cleavable linker</td>
+
            readout for
 
+
            simulated enhancer hijacking</td>
                <tr>
+
</tr>
                    <td><a href="https://parts.igem.org/Part:BBa_K5237023" target="_blank">BBa_K5237023</a></td>
+
</tbody>
                    <td>Oct1 - 5x UAS binding casette</td>
+
</table></section>
                    <td>Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay</td>
+
<section id="1">
                </tr>
+
<h1>1. Sequence overview</h1>
                <tr>
+
</section>
                    <td><a href="https://parts.igem.org/Part:BBa_K5237024" target="_blank">BBa_K5237024</a></td>
+
                    <td>TRE-minimal promoter- firefly luciferase</td>
+
                    <td>Contains Firefly luciferase controlled by a minimal promoter. It was used as a luminescence
+
                        readout for
+
                        simulated enhancer hijacking</td>
+
                </tr>
+
            </tbody>
+
        </table>
+
    </section>
+
    <section id="1">
+
        <h1>1. Sequence overview</h1>
+
    </section>
+
 
</body>
 
</body>
 
 
</html>
 
</html>
 
<span class="h3bb">Sequence and Features</span>
 
<span class="h3bb">Sequence and Features</span>
 
<partinfo>BBa_K5237000 SequenceAndFeatures</partinfo>
 
<partinfo>BBa_K5237000 SequenceAndFeatures</partinfo>
 
<html>
 
<html>
 
 
<body>
 
<body>
    <section id="2">
+
<section id="2">
        <h1>2. Usage and Biology</h1>
+
<h1>2. Usage and Biology</h1>
        <section id="2.1">
+
<section id="2.1">
            <h2>2.1 Discovery and Mechanism of CRISPR/Cas9</h2>
+
<h2>2.1 Discovery and Mechanism of CRISPR/Cas9</h2>
            <div class="thumb tright" style="margin:0;">
+
<div class="thumb tright" style="margin:0;">
                <div class="thumbinner" style="width:450px;">
+
<div class="thumbinner" style="width:450px;">
                    <img alt="" class="thumbimage"
+
<img alt="" class="thumbimage" src="https://static.igem.wiki/teams/5237/wetlab-results/cas-staple-svg/background-cas9-cas12a-principle.svg" style="width:99%;"/>
                        src="https://static.igem.wiki/teams/5237/wetlab-results/cas-staple-svg/background-cas9-cas12a-principle.svg"
+
<div class="thumbcaption">
                        style="width:99%;" />
+
<i>
                    <div class="thumbcaption">
+
<b>Figure 2: The CRISPR/Cas System </b>
                        <i>
+
                            <b>Figure 2: The CRISPR/Cas system </b>
+
 
                             A and B, schematic structure of Cas9 and Cas12a with their sgRNA/crRNA, sitting on a DNA
 
                             A and B, schematic structure of Cas9 and Cas12a with their sgRNA/crRNA, sitting on a DNA
 
                             strand with their respective PAMs.
 
                             strand with their respective PAMs.
Line 439: Line 415:
 
                             indicated by the scissors.
 
                             indicated by the scissors.
 
                         </i>
 
                         </i>
                    </div>
+
</div>
                </div>
+
</div>
            </div>
+
</div>
            <p>
+
<p>
 
                 In 2012, Jinek <i>et al.</i> discovered the use of the Clustered Regularly Interspaced Short Palindromic
 
                 In 2012, Jinek <i>et al.</i> discovered the use of the Clustered Regularly Interspaced Short Palindromic
 
                 Repeats
 
                 Repeats
Line 468: Line 444:
 
                 or SpyCas9, which originates from Streptococcus pyogenes (Pacesa <i>et al.</i>, 2024).
 
                 or SpyCas9, which originates from Streptococcus pyogenes (Pacesa <i>et al.</i>, 2024).
 
             </p>
 
             </p>
            <p>
+
<p>
                 A significant enhancement of the CRISPR-Cas9 system was the introduction of single guide RNAs
+
                 A significant enhancement of the CRISPR/Cas9 system was the introduction of single guide RNAs
 
                 (sgRNA[s]), which combine the
 
                 (sgRNA[s]), which combine the
 
                 functions of a tracrRNA and crRNA (Jinek <i>et al.</i>, 2012; Mali <i>et al.</i>, 2013).
 
                 functions of a tracrRNA and crRNA (Jinek <i>et al.</i>, 2012; Mali <i>et al.</i>, 2013).
Line 476: Line 452:
 
                 sequence accordingly.
 
                 sequence accordingly.
 
             </p>
 
             </p>
        </section>
+
</section>
        <section id="2.2">
+
<section id="2.2">
            <h2>2.2 Differences between Cas9 and Cas12a</h2>
+
<h2>2.2 Differences between Cas9 and Cas12a</h2>
            <p>
+
<p>
 
                 Over the following years, several additional class 2 CRISPR/Cas systems have been discovered, including
 
                 Over the following years, several additional class 2 CRISPR/Cas systems have been discovered, including
 
                 the Cpf1 system, which has
 
                 the Cpf1 system, which has
Line 505: Line 481:
 
                 2020).
 
                 2020).
 
             </p>
 
             </p>
        </section>
+
</section>
        <section id="2.3">
+
<section id="2.3">
            <h2>2.3 Dead Cas Proteins and their Application</h2>
+
<h2>2.3 Dead Cas Proteins and their Application</h2>
            <p>
+
<p>
 
                 Specific mutations of these domains result in catalytic inactivity and therefore allow for the creation
 
                 Specific mutations of these domains result in catalytic inactivity and therefore allow for the creation
 
                 of
 
                 of
Line 523: Line 499:
 
                 involves fusing Cas9 with the transcriptional activator, such as VP64 or VPR (Kampmann, 2017).
 
                 involves fusing Cas9 with the transcriptional activator, such as VP64 or VPR (Kampmann, 2017).
 
             </p>
 
             </p>
        </section>
+
</section>
    </section>
+
</section>
    <section id="3" style="clear:both;">
+
<section id="3" style="clear:both;">
        <h1>3. Assembly and part evolution</h1>
+
<h1>3. Assembly and Part Evolution</h1>
        <p>
+
<p>
 
             Building on insights of our fusion Cas engineering cycle and findings from Kweon (2017), fgRNAs were
 
             Building on insights of our fusion Cas engineering cycle and findings from Kweon (2017), fgRNAs were
 
             designed by
 
             designed by
Line 534: Line 510:
 
             linked to the 5'-end of the SpCas9 gRNA (through genetic fusion). Via this approach, the two spacer
 
             linked to the 5'-end of the SpCas9 gRNA (through genetic fusion). Via this approach, the two spacer
 
             sequences are fused directly, ensuring a
 
             sequences are fused directly, ensuring a
             minimal distance between the two DNA strands to be co-bound by the Cas staple complex.This also facilitates
+
             minimal distance between the two DNA strands to be co-bound by the Cas staple complex. This also facilitates
 
             efficient cloning of different spacer
 
             efficient cloning of different spacer
 
             sequences, as both spacers can be obtained as one consecutive sequence encoded on a single oligo. Linking
 
             sequences, as both spacers can be obtained as one consecutive sequence encoded on a single oligo. Linking
Line 544: Line 520:
 
             integration leads to the removal of the <b>ccdB</b> gene, allowing bacterial growth to be used as an
 
             integration leads to the removal of the <b>ccdB</b> gene, allowing bacterial growth to be used as an
 
             indicator for
 
             indicator for
             cloning success.<br />
+
             cloning success.<br/>
             A conventional gRNA expression vector containing an MbCas12a crRNA scoffold under the control of an U6
+
             A conventional gRNA expression vector containing an MbCas12a crRNA scaffold under the control of an U6
 
             promoter was selected as the basis
 
             promoter was selected as the basis
 
             for entry vector cloning. The vector and a ccdB-SpCas9 scaffold construct were PCR amplified and fitting
 
             for entry vector cloning. The vector and a ccdB-SpCas9 scaffold construct were PCR amplified and fitting
Line 553: Line 529:
 
             transformation was carried out in the ccdB-resistant XL1 Blue <i>E. Coli</i> strain.
 
             transformation was carried out in the ccdB-resistant XL1 Blue <i>E. Coli</i> strain.
 
         </p>
 
         </p>
        <div class="thumb">
+
<div class="thumb">
            <div class="thumbinner" style="width:80%;">
+
<div class="thumbinner" style="width:80%;">
                <img alt="" class="thumbimage" src="https://static.igem.wiki/teams/5237/wetlab-results/entry-vector.svg"
+
<img alt="" class="thumbimage" src="https://static.igem.wiki/teams/5237/wetlab-results/entry-vector.svg" style="width:99%;"/>
                    style="width:99%;" />
+
<div class="thumbcaption">
                <div class="thumbcaption">
+
<i>
                    <i>
+
<b>Figure 3: Construction Process of fgRNAs Using the Entry Vector.</b> The ccdB gene excised
                        <b>Figure 3: Construction process of fgRNAs using the entry vector.</b> The ccdB gene excised
+
 
                         using
 
                         using
 
                         SapI in a Golden Gate
 
                         SapI in a Golden Gate
Line 569: Line 544:
 
                         survive.
 
                         survive.
 
                     </i>
 
                     </i>
                </div>
+
</div>
            </div>
+
</div>
            <p>
+
<p>
 
                 The first goal following successful assembly of our first fgRNAs was to show the simultaneous editing of
 
                 The first goal following successful assembly of our first fgRNAs was to show the simultaneous editing of
 
                 the two fgRNA-targeted genomic sites in mammalian cells (HEK239T). The genes
 
                 the two fgRNA-targeted genomic sites in mammalian cells (HEK239T). The genes
Line 582: Line 557:
 
                 ordered as synthetic oligos, annealed, and cloned in via GGA utilizing SapI.
 
                 ordered as synthetic oligos, annealed, and cloned in via GGA utilizing SapI.
 
             </p>
 
             </p>
            <div class="thumb tright" style="margin:0;"></div>
+
<div class="thumb tright" style="margin:0;"></div>
            <div class="thumbinner" style="width:400px;">
+
<div class="thumbinner" style="width:400px;">
                <img alt="" class="thumbimage"
+
<img alt="" class="thumbimage" src="https://static.igem.wiki/teams/5237/wetlab-results/cas-staple-svg/background-crispr-cas-system-fgrna-past.svg" style="width:99%;"/>
                    src="https://static.igem.wiki/teams/5237/wetlab-results/cas-staple-svg/background-crispr-cas-system-fgrna-past.svg"
+
<div class="thumbcaption">
                    style="width:99%;" />
+
<i>
                <div class="thumbcaption">
+
<b>Figure 4: Applications of the Fusion Guide RNA</b>
                    <i>
+
                         Fusion Guide RNAs can be used for multiplex genome editing by guiding active Cas12a and Cas9 to
                        <b>Figure 4: Applications of the Fusion Guide RNA</b>
+
                         Fusion Guide RNAs can be used for multiplex genome editing by guidingactive Cas12a and Cas9 to
+
 
                         two
 
                         two
 
                         distinct loci. Similarly, fgRNAs allow for CRISPRa, by guiding the Cas9-VP64 transcriptional
 
                         distinct loci. Similarly, fgRNAs allow for CRISPRa, by guiding the Cas9-VP64 transcriptional
Line 597: Line 570:
 
                         target locus.
 
                         target locus.
 
                     </i>
 
                     </i>
                </div>
+
</div>
            </div>
+
</div>
        </div>
+
</div>
        <div style="display: flex;justify-content: left;gap: 20px; margin-top:20px; margin-bottom:20px;">
+
<div style="display: flex;justify-content: left;gap: 20px; margin-top:20px; margin-bottom:20px;">
          <table style="width:40%; margin:0px;border-collapse: collapse;">
+
<table style="width:40%; margin:0px;border-collapse: collapse;">
                <thead>
+
<thead>
              <tr>
+
<tr>
                <td align="left" colspan="2" style="padding: 2px; height: 40px;">
+
<td align="left" colspan="2" style="padding: 2px; height: 40px;">
                        <b>Table 1:</b> A list of all the different spacers we cloned and tested within the fgRNA
+
<b>Table 1:</b> A list of all the different spacers we cloned and tested within the fgRNA
                    </td>
+
              </tr>
+
                </thead>
+
                <tbody>
+
                    <tr>
+
                <td style="width: 100px; padding: 2px; height: 40px; vertical-align: top;">CCR5</td>
+
                <td style="word-wrap: break-word; padding: 2px; height: 40px; vertical-align: top;">TGACATCAATTATTATACAT
+
                </td>
+
                    </tr>
+
                    <tr>
+
                <td style="padding: 2px; height: 40px; vertical-align: top;">Dnmt1</td>
+
                <td style="word-wrap: break-word; padding: 2px; height: 40px; vertical-align: top;">GCTCAGCAGGCACCTGCCTC
+
                </td>
+
                    </tr>
+
                    <tr>
+
                <td style="padding: 2px; height: 40px; vertical-align: top;">Fancf</td>
+
                <td style="word-wrap: break-word; padding: 2px; height: 40px; vertical-align: top;">GGCGGGGTCCAGTTCCGGGA
+
                </td>
+
                    </tr>
+
                    <tr>
+
                <td style="padding: 2px; height: 40px; vertical-align: top;">Oct1 (<a href="https://parts.igem.org/Part:BBa_K5237018" target="_blank">BBa_K5237018</a>)</td>
+
                <td style="word-wrap: break-word; padding: 2px; height: 40px; vertical-align: top;">ATGCAAATACTGCACTAGTG
+
                </td>
+
                    </tr>
+
                    <tr>
+
                <td style="padding: 2px; height: 40px; vertical-align: top;">Runx1</td>
+
                <td style="word-wrap: break-word; padding: 2px; height: 40px; vertical-align: top;">CCTTCGGAGCGAAAACCAAG
+
 
                         </td>
 
                         </td>
              </tr>
+
</tr>
              <tr>
+
</thead>
                <td style="padding: 2px; height: 40px; vertical-align: top;">TetO (<a href="https://parts.igem.org/Part:BBa_K5237019" target="_blank">BBa_K5237019</a>)</td>
+
<tbody>
                <td style="word-wrap: break-word; padding: 2px; height: 40px; vertical-align: top;">TCTCTATCACTGATAGGGAG
+
<tr>
                </td>
+
<td style="width: 100px; padding: 2px; height: 40px; vertical-align: top;">CCR5</td>
              </tr>
+
<td style="word-wrap: break-word; padding: 2px; height: 40px; vertical-align: top;">
              <tr>
+
                            TGACATCAATTATTATACAT
                <td style="padding: 2px; height: 40px; vertical-align: top;">VEGFA</td>
+
                        </td>
                <td style="word-wrap: break-word; padding: 2px; height: 40px; vertical-align: top;">CTAGGAATATTGAAGGGGGC
+
</tr>
                </td>
+
<tr>
                    </tr>
+
<td style="padding: 2px; height: 40px; vertical-align: top;">Dnmt1</td>
                </tbody>
+
<td style="word-wrap: break-word; padding: 2px; height: 40px; vertical-align: top;">
            </table>
+
                            GCTCAGCAGGCACCTGCCTC
   
+
                        </td>
          <table style="width:40%; margin:0px; border-collapse: collapse;">
+
</tr>
            <thead>
+
<tr>
              <tr>
+
<td style="padding: 2px; height: 40px; vertical-align: top;">Fancf</td>
                <td align="left" colspan="2" style="padding: 2px; height: 40px;">
+
<td style="word-wrap: break-word; padding: 2px; height: 40px; vertical-align: top;">
                  <b>Table 2:</b> A list of all the different linkers we cloned and tested within the fgRNA
+
                            GGCGGGGTCCAGTTCCGGGA
                </td>
+
                        </td>
              </tr>
+
</tr>
            </thead>
+
<tr>
            <tbody>
+
<td style="padding: 2px; height: 40px; vertical-align: top;">Oct1 (<a href="https://parts.igem.org/Part:BBa_K5237018" target="_blank">BBa_K5237018</a>)</td>
              <tr>
+
<td style="word-wrap: break-word; padding: 2px; height: 40px; vertical-align: top;">
                <td style="width: 100px; padding: 2px; height: 40px; vertical-align: top;">5 nt linker</td>
+
                            ATGCAAATACTGCACTAGTG
                <td style="word-wrap: break-word; padding: 2px; height: 40px; vertical-align: top;">ATGCG</td>
+
                        </td>
              </tr>
+
</tr>
              <tr>
+
<tr>
                <td style="padding: 2px; height: 40px; vertical-align: top;">10 nt linker</td>
+
<td style="padding: 2px; height: 40px; vertical-align: top;">Runx1</td>
                <td style="word-wrap: break-word; padding: 2px; height: 40px; vertical-align: top;">ATGCGAGCTG</td>
+
<td style="word-wrap: break-word; padding: 2px; height: 40px; vertical-align: top;">
              </tr>
+
                            CCTTCGGAGCGAAAACCAAG
              <tr>
+
                        </td>
                <td style="padding: 2px; height: 40px; vertical-align: top;">10 nt Poly A linker</td>
+
</tr>
                <td style="word-wrap: break-word; padding: 2px; height: 40px; vertical-align: top;">CAAAACAACA</td>
+
<tr>
              </tr>
+
<td style="padding: 2px; height: 40px; vertical-align: top;">TetO (<a href="https://parts.igem.org/Part:BBa_K5237019" target="_blank">BBa_K5237019</a>)</td>
              <tr>
+
<td style="word-wrap: break-word; padding: 2px; height: 40px; vertical-align: top;">
                <td style="padding: 2px; height: 40px; vertical-align: top;">20 nt linker</td>
+
                            TCTCTATCACTGATAGGGAG
                <td style="word-wrap: break-word; padding: 2px; height: 40px; vertical-align: top;">TGGCGGCGTGCTGACCGCTA
+
                        </td>
                </td>
+
</tr>
              </tr>
+
<tr>
              <tr>
+
<td style="padding: 2px; height: 40px; vertical-align: top;">VEGFA</td>
                <td style="padding: 2px; height: 40px; vertical-align: top;">20 nt Poly A linker</td>
+
<td style="word-wrap: break-word; padding: 2px; height: 40px; vertical-align: top;">
                <td style="word-wrap: break-word; padding: 2px; height: 40px; vertical-align: top;">CAAAACAACAATCAAAACAA
+
                            CTAGGAATATTGAAGGGGGC
                </td>
+
                        </td>
              </tr>
+
</tr>
              <tr>
+
</tbody>
                <td style="padding: 2px; height: 40px; vertical-align: top;">30 nt Poly A linker</td>
+
</table>
                <td style="word-wrap: break-word; padding: 2px; height: 40px; vertical-align: top;">
+
<table style="width:40%; margin:0px; border-collapse: collapse;">
                  CAAAACAACAATCAAAACAA<br>ATCAAAACAA</td>
+
<thead>
              </tr>
+
<tr>
              <tr>
+
<td align="left" colspan="2" style="padding: 2px; height: 40px;">
                <td style="padding: 2px; height: 40px; vertical-align: top;">40 nt Poly A linker</td>
+
<b>Table 2:</b> A list of all the different linkers we cloned and tested within the fgRNA
                <td style="word-wrap: break-word; padding: 2px; height: 40px; vertical-align: top;">
+
                        </td>
                  CAAAACAACAATCAAAACAACAAAACAA<br>CAATCAAAACAA</td>
+
</tr>
              </tr>
+
</thead>
            </tbody>
+
<tbody>
          </table>
+
<tr>
        </div>
+
<td style="width: 100px; padding: 2px; height: 40px; vertical-align: top;">5 nt linker</td>
    <p>
+
<td style="word-wrap: break-word; padding: 2px; height: 40px; vertical-align: top;">ATGCG</td>
      We constructed a second entry vector incorporating an AsCas12a scaffold (5' taatttctactcttgtagat 3') instead of
+
</tr>
 +
<tr>
 +
<td style="padding: 2px; height: 40px; vertical-align: top;">10 nt linker</td>
 +
<td style="word-wrap: break-word; padding: 2px; height: 40px; vertical-align: top;">ATGCGAGCTG
 +
                        </td>
 +
</tr>
 +
<tr>
 +
<td style="padding: 2px; height: 40px; vertical-align: top;">10 nt Poly A linker</td>
 +
<td style="word-wrap: break-word; padding: 2px; height: 40px; vertical-align: top;">CAAAACAACA
 +
                        </td>
 +
</tr>
 +
<tr>
 +
<td style="padding: 2px; height: 40px; vertical-align: top;">20 nt linker</td>
 +
<td style="word-wrap: break-word; padding: 2px; height: 40px; vertical-align: top;">
 +
                            TGGCGGCGTGCTGACCGCTA
 +
                        </td>
 +
</tr>
 +
<tr>
 +
<td style="padding: 2px; height: 40px; vertical-align: top;">20 nt Poly A linker</td>
 +
<td style="word-wrap: break-word; padding: 2px; height: 40px; vertical-align: top;">
 +
                            CAAAACAACAATCAAAACAA
 +
                        </td>
 +
</tr>
 +
<tr>
 +
<td style="padding: 2px; height: 40px; vertical-align: top;">30 nt Poly A linker</td>
 +
<td style="word-wrap: break-word; padding: 2px; height: 40px; vertical-align: top;">
 +
                            CAAAACAACAATCAAAACAA<br/>ATCAAAACAA</td>
 +
</tr>
 +
<tr>
 +
<td style="padding: 2px; height: 40px; vertical-align: top;">40 nt Poly A linker</td>
 +
<td style="word-wrap: break-word; padding: 2px; height: 40px; vertical-align: top;">
 +
                            CAAAACAACAATCAAAACAACAAAACAA<br/>CAATCAAAACAA</td>
 +
</tr>
 +
</tbody>
 +
</table>
 +
</div>
 +
<p>
 +
            We constructed a second entry vector incorporating an AsCas12a scaffold (5' taatttctactcttgtagat 3') instead
 +
            of
 
             MbCas12a.
 
             MbCas12a.
 
             The sequence of the AsCas12a scaffold was the only modification in the composite part. This vector was
 
             The sequence of the AsCas12a scaffold was the only modification in the composite part. This vector was
Line 700: Line 684:
 
             loci VEGFA and FANCF to assess its functionality.
 
             loci VEGFA and FANCF to assess its functionality.
 
         </p>
 
         </p>
 
+
</section>
    </section>
+
<section id="4">
    <section id="4">
+
<h1>4. Results</h1>
        <h1>4. Results</h1>
+
<section id="4.1">
        <section id="4.1">
+
<h2>4.1 Editing endogenous loci with fgRNAs</h2>
            <h2>4.1 Editing endogenous loci with fgRNAs</h2>
+
<p>
            <p>
+
 
                 To prove that our fusion gRNAs still result in active ribonucleoproteins, a series of different fgRNAs
 
                 To prove that our fusion gRNAs still result in active ribonucleoproteins, a series of different fgRNAs
 
                 were
 
                 were
Line 713: Line 696:
 
                 Cas
 
                 Cas
 
                 protein and gRNA constructs. The editing rate was tested 72h after transfection via a T7 endonuclease I
 
                 protein and gRNA constructs. The editing rate was tested 72h after transfection via a T7 endonuclease I
                 assay.<br />
+
                 assay.<br>
  
 
                 AsCas12a and SpCas9 were used. The AsCas12a spacer targets VEGFA, while the SpCas9 spacer targets FANCF.
 
                 AsCas12a and SpCas9 were used. The AsCas12a spacer targets VEGFA, while the SpCas9 spacer targets FANCF.
Line 734: Line 717:
 
                 with
 
                 with
 
                 fgRNAs.
 
                 fgRNAs.
             </p>
+
             </br></p>
            <div class="thumb">
+
<div class="thumb">
                <div class="thumbinner" style="width:60%;">
+
<div class="thumbinner" style="width:60%;">
                    <img alt="" class="thumbimage"
+
<img alt="" class="thumbimage" src="https://static.igem.wiki/teams/5237/wetlab-results/results-ascas-2.svg" style="width:99%;"/>
                        src="https://static.igem.wiki/teams/5237/wetlab-results/results-ascas-2.svg"
+
<div class="thumbcaption">
                        style="width:99%;" />
+
<i>
                    <div class="thumbcaption">
+
<b>Figure 5: fgRNAs Enable Efficient Editing of Endogenous Loci.</b>
                        <i>
+
                            <b>Figure 5: fgRNAs Enable Efficient Editing of Endogenous Loci.</b>
+
 
                             The editing rates were determined 72h after transfection via T7EI assay. Editing % was
 
                             The editing rates were determined 72h after transfection via T7EI assay. Editing % was
 
                             determined by
 
                             determined by
Line 754: Line 735:
 
                             each sample.
 
                             each sample.
 
                         </i>
 
                         </i>
                    </div>
+
</div>
                </div>
+
</div>
            </div>
+
</div>
        </section>
+
</section>
        <section id="4.2">
+
<section id="4.2">
            <h2>4.2 Efficient Fusion Guide RNA-Mediated Editing With Various Cas Orthologs</h2>
+
<h2>4.2 Efficient Fusion Guide RNA-Mediated Editing With Various Cas Orthologs</h2>
            <p>
+
<p>
 
                 After showing efficient editing, the next step was to evaluate the capabilities of the fgRNAs, we tested
 
                 After showing efficient editing, the next step was to evaluate the capabilities of the fgRNAs, we tested
 
                 them in combination
 
                 them in combination
Line 771: Line 752:
 
                 SpCas9 editing has not been significantly different.
 
                 SpCas9 editing has not been significantly different.
 
             </p>
 
             </p>
            <div class="thumb">
+
<div class="thumb">
                <div class="thumbinner" style="width:60%;">
+
<div class="thumbinner" style="width:60%;">
                    <img alt="" class="thumbimage"
+
<img alt="" class="thumbimage" src="https://static.igem.wiki/teams/5237/engineering/cas12-decision.svg" style="width:99%;"/>
                        src="https://static.igem.wiki/teams/5237/engineering/cas12-decision.svg" style="width:99%;" />
+
<div class="thumbcaption">
                    <div class="thumbcaption">
+
<i>
                        <i>
+
<b>Figure 6: Comparison of AsCas12a and MbCas12a with a Dual Luciferase Assay.</b>
                            <b>Figure 6: Comparison of AsCas12a and MbCas12a with a dual luciferase assay.</b>
+
 
                             Firefly luminescence intensity measured 48 h after transfection. Normalized against renilla
 
                             Firefly luminescence intensity measured 48 h after transfection. Normalized against renilla
 
                             luminescence.
 
                             luminescence.
Line 791: Line 771:
 
                             ****p&lt;0.0001
 
                             ****p&lt;0.0001
 
                         </i>
 
                         </i>
                    </div>
+
</div>
                </div>
+
</div>
            </div>
+
</div>
            <p>
+
<p>
 
                 Additionally, to test if the differences in editing rates from the preliminary assay resulted from the
 
                 Additionally, to test if the differences in editing rates from the preliminary assay resulted from the
 
                 targeted
 
                 targeted
Line 802: Line 782:
 
                 of a
 
                 of a
 
                 fgRNA
 
                 fgRNA
                 has on the editing rates, the sgRNAs were tested separately and in one sample.<br />
+
                 has on the editing rates, the sgRNAs were tested separately and in one sample.<br>
 
                 Having the sgRNA with single Cas
 
                 Having the sgRNA with single Cas
 
                 proteins in the same sample resulted in no clear difference in the editing rates (Fig. 7). The fusion of
 
                 proteins in the same sample resulted in no clear difference in the editing rates (Fig. 7). The fusion of
Line 811: Line 791:
 
                 under
 
                 under
 
                 the same conditions, the editing rates for MbCas12a were overall lower than the ones from SpCas9.
 
                 the same conditions, the editing rates for MbCas12a were overall lower than the ones from SpCas9.
             </p>
+
             </br></p>
            <div class="thumb">
+
<div class="thumb">
                <div class="thumbinner" style="width:90%;">
+
<div class="thumbinner" style="width:90%;">
                    <img alt="" class="thumbimage"
+
<img alt="" class="thumbimage" src="https://static.igem.wiki/teams/5237/wetlab-results/results-mbcas-2.svg" style="width:99%;"/>
                        src="https://static.igem.wiki/teams/5237/wetlab-results/results-mbcas-2.svg"
+
<div class="thumbcaption">
                        style="width:99%;" />
+
<i>
                    <div class="thumbcaption">
+
<b>Figure 7: Fusion gRNA Editing Rates In Combination with MbCas12a.</b>
                        <i>
+
                            <b>Figure 7: Fusion gRNA Editing Rates In Combination with MbCas12a.</b>
+
 
                             In <b>A</b> and <b>B</b> the editing rates were determined 72h after transfection via T7EI
 
                             In <b>A</b> and <b>B</b> the editing rates were determined 72h after transfection via T7EI
 
                             assay. Editing % was determined by measuring band intensities; Editing % = 100 x (1 - (1-
 
                             assay. Editing % was determined by measuring band intensities; Editing % = 100 x (1 - (1-
Line 830: Line 808:
 
                             display both orientations of the two spacers for VEGFA and FANCF.
 
                             display both orientations of the two spacers for VEGFA and FANCF.
 
                         </i>
 
                         </i>
                    </div>
+
</div>
                </div>
+
</div>
            </div>
+
</div>
        </section>
+
</section>
        <section id="4.3">
+
<section id="4.3">
            <h2>4.3 The Inclusion of a Linker Does Not Lower Editing Rates</h2>
+
<h2>4.3 The Inclusion of a Linker Does Not Lower Editing Rates</h2>
            <p>
+
<p>
 
                 To further assess the effect of the genomic locus on the editing rate, we included CCR5 as an additional
 
                 To further assess the effect of the genomic locus on the editing rate, we included CCR5 as an additional
 
                 gene target. For this assay, a fgRNA with a 20 nt long linker was included between the two spacers. The
 
                 gene target. For this assay, a fgRNA with a 20 nt long linker was included between the two spacers. The
Line 846: Line 824:
 
                 addition of the 20 nt linker had no effect on the editing rates compared to no linker.
 
                 addition of the 20 nt linker had no effect on the editing rates compared to no linker.
 
             </p>
 
             </p>
            <div class="thumb">
+
<div class="thumb">
                <div class="thumbinner" style="width:60%;">
+
<div class="thumbinner" style="width:60%;">
                    <img alt="" class="thumbimage"
+
<img alt="" class="thumbimage" src="https://static.igem.wiki/teams/5237/wetlab-results/results-ccr5-2.svg" style="width:99%;"/>
                        src="https://static.igem.wiki/teams/5237/wetlab-results/results-ccr5-2.svg"
+
<div class="thumbcaption">
                        style="width:99%;" />
+
<i>
                    <div class="thumbcaption">
+
<b>Figure 8: Fusion gRNA Editing Rates for Multiplexing CCR5 and VEGFA</b>
                        <i>
+
                            <b>Figure 8: Fusion gRNA Editing Rates for Multiplexing CCR5 and VEGFA</b>
+
 
                             The editing rates were determined 72h after transfection via T7EI assay. Editing % was
 
                             The editing rates were determined 72h after transfection via T7EI assay. Editing % was
 
                             determined by
 
                             determined by
Line 865: Line 841:
 
                             each sample. Cas12a targets VEGFA and Cas9 targets CCR5.
 
                             each sample. Cas12a targets VEGFA and Cas9 targets CCR5.
 
                         </i>
 
                         </i>
                    </div>
+
</div>
                </div>
+
</div>
            </div>
+
</div>
        </section>
+
</section>
        <section id="4.4">
+
<section id="4.4">
            <h2>4.4 fgRNAs can be used for CRISPRa</h2>
+
<h2>4.4 Fusion Guide RNAs can be Used for CRISPRa</h2>
            <p>
+
<p>
 
                 To establish the foundation for their use as protein scaffolds, we identified the next step as
 
                 To establish the foundation for their use as protein scaffolds, we identified the next step as
 
                 demonstrating the
 
                 demonstrating the
 
                 use
 
                 use
                 of fgRNAs for CRISPR activation. For this, we intend to recruit the transcriptional activator VP64 to a
+
                 of fgRNAs for CRISPRa. For this, we intend to recruit the transcriptional activator VP64 to a
 
                 firefly
 
                 firefly
 
                 luciferase gene to induce expression. The VP64 protein is attached to the catalytically inactive Cas9
 
                 luciferase gene to induce expression. The VP64 protein is attached to the catalytically inactive Cas9
Line 885: Line 861:
 
                 counts and normalized against Renilla luciferase, which is expressed on a separate plasmid under an
 
                 counts and normalized against Renilla luciferase, which is expressed on a separate plasmid under an
 
                 ubiquitous
 
                 ubiquitous
                 promoter. In two biological replicates we saw similar Relative luciferase activity with fgRNA as a guide
+
                 promoter. In two biological replicates we saw similar relative luciferase activity with fgRNA as a guide
 
                 compared
 
                 compared
 
                 to a sgRNA (Fig. 9).
 
                 to a sgRNA (Fig. 9).
 
             </p>
 
             </p>
            <div class="thumb">
+
<div class="thumb">
                <div class="thumbinner" style="width:40%;">
+
<div class="thumbinner" style="width:40%;">
                    <img alt="" class="thumbimage"
+
<img alt="" class="thumbimage" src="https://static.igem.wiki/teams/5237/wetlab-results/results-crispra-2.svg" style="width:99%;"/>
                        src="https://static.igem.wiki/teams/5237/wetlab-results/results-crispra-2.svg"
+
<div class="thumbcaption">
                        style="width:99%;" />
+
<i>
                    <div class="thumbcaption">
+
<b>Figure 9: CRISPRa Induced Luciferase Expression for sgRNAs and fgRNAs.</b>
                        <i>
+
                            <b>Figure 9: CRISPRa Induced Luciferase Expression for sgRNAs and fgRNAs.</b>
+
 
                             Firefly luciferase activity was measured 48h after transfection. Normalized against
 
                             Firefly luciferase activity was measured 48h after transfection. Normalized against
 
                             ubiquitously expressed
 
                             ubiquitously expressed
Line 909: Line 883:
 
                             sample.
 
                             sample.
 
                         </i>
 
                         </i>
                    </div>
+
</div>
                </div>
+
</div>
            </div>
+
</div>
        </section>
+
</section>
        <section id="4.5">
+
<section id="4.5">
            <h2>4.5 Stapling Two DNA Strands Together Using fgRNAs</h2>
+
<h2>4.5 Stapling Two DNA Strands Together Using fgRNAs</h2>
            <p>
+
<p>
 
                 After showing the general capability of the fgRNA
 
                 After showing the general capability of the fgRNA
 
                 to work for editing and for CRISPR activation, the next step was to use it to staple two DNA loci
 
                 to work for editing and for CRISPR activation, the next step was to use it to staple two DNA loci
Line 927: Line 901:
 
                 a fgRNA staple and a Gal4-VP64, expression of the luciferase is induced (Fig. 10, Panel A).
 
                 a fgRNA staple and a Gal4-VP64, expression of the luciferase is induced (Fig. 10, Panel A).
 
                 Different linker lengths were tested. Cells were again normalized against ubiquitous renilla
 
                 Different linker lengths were tested. Cells were again normalized against ubiquitous renilla
                 expression.<br />
+
                 expression.<br/>
 
                 Using no linker between the two spacers showed similar relative luciferase activity to the baseline
 
                 Using no linker between the two spacers showed similar relative luciferase activity to the baseline
 
                 control
 
                 control
Line 936: Line 910:
 
                 hijacking an enhancer/activator.
 
                 hijacking an enhancer/activator.
 
             </p>
 
             </p>
            <div class="thumb">
+
<div class="thumb">
                <div class="thumbinner" style="width:60%;">
+
<div class="thumbinner" style="width:60%;">
                    <img alt="" class="thumbimage"
+
<img alt="" class="thumbimage" src="https://static.igem.wiki/teams/5237/wetlab-results/results-eh-2.svg" style="width:99%;"/>
                        src="https://static.igem.wiki/teams/5237/wetlab-results/results-eh-2.svg" style="width:99%;" />
+
<div class="thumbcaption">
                    <div class="thumbcaption">
+
<i>
                        <i>
+
<b>Figure 10: Applying Fusion Guide RNAs for Cas staples.</b> <b>A</b>, schematic overview
                            <b>Figure 10: Applying Fusion Guide RNAs for Cas staples.</b> <b>A</b>, schematic overview
+
 
                             of the assay.
 
                             of the assay.
 
                             An enhancer
 
                             An enhancer
Line 966: Line 939:
 
                             to 40 nt.
 
                             to 40 nt.
 
                         </i>
 
                         </i>
                    </div>
+
</div>
                </div>
+
</div>
            </div>
+
</div>
        </section>
+
</section>
    </section>
+
</section>
    <section id="5">
+
<section id="6">
        <h1>5. References</h1>
+
<h1>5. References</h1>
        <p>Aregger, M., Xing, K., &amp; Gonatopoulos-Pournatzis, T. (2021). Application of CHyMErA Cas9-Cas12a
+
<p>Aregger, M., Xing, K., &amp; Gonatopoulos-Pournatzis, T. (2021). Application of CHyMErA
 +
            Cas9-Cas12a
 
             combinatorial
 
             combinatorial
             genome-editing platform for genetic interaction mapping and gene fragment deletion screening. <i>Nature
+
             genome-editing platform for genetic interaction mapping and gene fragment deletion screening.
                 Protocols</i>, 16, 4722-4765. <a href="https://doi.org/10.1038/s41596-021-00595-1"
+
            <i>Nature
                target="_blank">https://doi.org/10.1038/s41596-021-00595-1</a></p>
+
                 Protocols</i>, 16, 4722-4765. <a href="https://doi.org/10.1038/s41596-021-00595-1" target="_blank">https://doi.org/10.1038/s41596-021-00595-1</a>
        <p>Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini,
+
</p>
 +
<p>Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W.,
 +
            Marraffini,
 
             L.
 
             L.
             A., &amp; Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. <i>Science</i>, 339,
+
             A., &amp; Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems.
 +
            <i>Science</i>, 339,
 
             819-823.
 
             819-823.
             <a href="https://doi.org/10.1126/science.1231143"
+
             <a href="https://doi.org/10.1126/science.1231143" target="_blank">https://doi.org/10.1126/science.1231143</a>
                target="_blank">https://doi.org/10.1126/science.1231143</a>
+
</p>
        </p>
+
<p>Gonatopoulos-Pournatzis, T., Aregger, M., Brown, K. R., Farhangmehr, S., Braunschweig, U., Ward,
        <p>Gonatopoulos-Pournatzis, T., Aregger, M., Brown, K. R., Farhangmehr, S., Braunschweig, U., Ward, H. N., Ha,
+
            H. N., Ha,
 
             K. C.
 
             K. C.
             H., Weiss, A., Billmann, M., Durbic, T., Myers, C. L., Blencowe, B. J., &amp; Moffat, J. (2020). Genetic
+
             H., Weiss, A., Billmann, M., Durbic, T., Myers, C. L., Blencowe, B. J., &amp; Moffat, J. (2020).
             interaction mapping and exon-resolution functional genomics with a hybrid Cas9-Cas12a platform. <i>Nature
+
            Genetic
                 Biotechnology</i>, 38, 638-648. <a href="https://doi.org/10.1038/s41587-020-0437-z"
+
             interaction mapping and exon-resolution functional genomics with a hybrid Cas9-Cas12a platform.
                target="_blank">https://doi.org/10.1038/s41587-020-0437-z</a></p>
+
            <i>Nature
        <p>Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., &amp; Charpentier, E. (2012). A programmable
+
                 Biotechnology</i>, 38, 638-648. <a href="https://doi.org/10.1038/s41587-020-0437-z" target="_blank">https://doi.org/10.1038/s41587-020-0437-z</a>
             dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. <i>Science</i>, 337, 816-821. <a
+
</p>
                href="https://doi.org/10.1126/science.1225829"
+
<p>Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., &amp; Charpentier, E. (2012). A
                target="_blank">https://doi.org/10.1126/science.1225829</a></p>
+
            programmable
        <p>Kampmann, M. (2017). CRISPRi and CRISPRa screens in mammalian cells for precision biology and medicine.
+
             dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. <i>Science</i>, 337, 816-821.
 +
            <a href="https://doi.org/10.1126/science.1225829" target="_blank">https://doi.org/10.1126/science.1225829</a>
 +
</p>
 +
<p>Kampmann, M. (2017). CRISPRi and CRISPRa screens in mammalian cells for precision biology and
 +
            medicine.
 
             <i>ACS
 
             <i>ACS
                 Chemical Biology</i>, 13, 406-416. <a href="https://doi.org/10.1021/acschembio.7b00657"
+
                 Chemical Biology</i>, 13, 406-416. <a href="https://doi.org/10.1021/acschembio.7b00657" target="_blank">https://doi.org/10.1021/acschembio.7b00657</a>
                target="_blank">https://doi.org/10.1021/acschembio.7b00657</a>
+
</p>
        </p>
+
<p>Kleinstiver, B. P., Sousa, A. A., Walton, R. T., Tak, Y. E., Hsu, J. Y., Clement, K., Welch, M.
        <p>Kleinstiver, B. P., Sousa, A. A., Walton, R. T., Tak, Y. E., Hsu, J. Y., Clement, K., Welch, M. M., Horng, J.
+
            M., Horng, J.
 
             E.,
 
             E.,
             Malagon-Lopez, J., Scarfò, I., Maus, M. V., Pinello, L., Aryee, M. J., &amp; Joung, J. K. (2019). Engineered
+
             Malagon-Lopez, J., Scarfò, I., Maus, M. V., Pinello, L., Aryee, M. J., &amp; Joung, J. K.
             CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base
+
            (2019). Engineered
             editing. <i>Nature Biotechnology</i>, 37, 276-282. <a href="https://doi.org/10.1038/s41587-018-0011-0"
+
             CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene,
                target="_blank">https://doi.org/10.1038/s41587-018-0011-0</a></p>
+
            epigenetic and base
        <p>Koonin, E. V., Gootenberg, J. S., &amp; Abudayyeh, O. O. (2023). Discovery of diverse CRISPR-Cas systems and
+
             editing. <i>Nature Biotechnology</i>, 37, 276-282. <a href="https://doi.org/10.1038/s41587-018-0011-0" target="_blank">https://doi.org/10.1038/s41587-018-0011-0</a></p>
             expansion of the genome engineering toolbox. <i>Biochemistry</i>, 62, 3465-3487. <a
+
<p>Koonin, E. V., Gootenberg, J. S., &amp; Abudayyeh, O. O. (2023). Discovery of diverse CRISPR-Cas
                href="https://doi.org/10.1021/acs.biochem.3c00159"
+
            systems and
                target="_blank">https://doi.org/10.1021/acs.biochem.3c00159</a></p>
+
             expansion of the genome engineering toolbox. <i>Biochemistry</i>, 62, 3465-3487. <a href="https://doi.org/10.1021/acs.biochem.3c00159" target="_blank">https://doi.org/10.1021/acs.biochem.3c00159</a></p>
        <p>Kweon, J., Jang, A.-H., Kim, D.-e., Yang, J. W., Yoon, M., Rim Shin, H., Kim, J.-S., &amp; Kim, Y. (2017).
+
<p>Kweon, J., Jang, A.-H., Kim, D.-e., Yang, J. W., Yoon, M., Rim Shin, H., Kim, J.-S., &amp; Kim,
 +
            Y. (2017).
 
             Fusion
 
             Fusion
             guide RNAs for orthogonal gene manipulation with Cas9 and Cpf1. <i>Nature Communications</i>, 8. <a
+
             guide RNAs for orthogonal gene manipulation with Cas9 and Cpf1. <i>Nature Communications</i>, 8.
                href="https://doi.org/10.1038/s41467-017-01650-w"
+
            <a href="https://doi.org/10.1038/s41467-017-01650-w" target="_blank">https://doi.org/10.1038/s41467-017-01650-w</a>
                target="_blank">https://doi.org/10.1038/s41467-017-01650-w</a>
+
</p>
        </p>
+
<p>Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., &amp;
        <p>Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., &amp; Church, G. M.
+
            Church, G. M.
             (2013). RNA-guided human genome engineering via Cas9. <i>Science</i>, 339, 823-826. <a
+
             (2013). RNA-guided human genome engineering via Cas9. <i>Science</i>, 339, 823-826. <a href="https://doi.org/10.1126/science.1232033" target="_blank">https://doi.org/10.1126/science.1232033</a></p>
                href="https://doi.org/10.1126/science.1232033"
+
<p>Nishimasu, H., Ran, F. A., Hsu, P. D., Konermann, S., Shehata, S. I., Dohmae, N., Ishitani, R.,
                target="_blank">https://doi.org/10.1126/science.1232033</a></p>
+
            Zhang, F.,
        <p>Nishimasu, H., Ran, F. A., Hsu, P. D., Konermann, S., Shehata, S. I., Dohmae, N., Ishitani, R., Zhang, F.,
+
 
             &amp;
 
             &amp;
             Nureki, O. (2014). Crystal structure of Cas9 in complex with guide RNA and target DNA. <i>Cell</i>, 156,
+
             Nureki, O. (2014). Crystal structure of Cas9 in complex with guide RNA and target DNA.
 +
            <i>Cell</i>, 156,
 
             935-949.
 
             935-949.
             <a href="https://doi.org/10.1016/j.cell.2014.02.001"
+
             <a href="https://doi.org/10.1016/j.cell.2014.02.001" target="_blank">https://doi.org/10.1016/j.cell.2014.02.001</a>
                target="_blank">https://doi.org/10.1016/j.cell.2014.02.001</a>
+
</p>
        </p>
+
<p>Pacesa, M., Pelea, O., &amp; Jinek, M. (2024). Past, present, and future of CRISPR genome editing
        <p>Pacesa, M., Pelea, O., &amp; Jinek, M. (2024). Past, present, and future of CRISPR genome editing
+
 
             technologies.
 
             technologies.
             <i>Cell</i>, 187, 1076-1100. <a href="https://doi.org/10.1016/j.cell.2024.01.042"
+
             <i>Cell</i>, 187, 1076-1100. <a href="https://doi.org/10.1016/j.cell.2024.01.042" target="_blank">https://doi.org/10.1016/j.cell.2024.01.042</a>
                target="_blank">https://doi.org/10.1016/j.cell.2024.01.042</a>
+
</p>
        </p>
+
<p>Paul, B., &amp; Montoya, G. (2020). CRISPR-Cas12a: Functional overview and applications.
        <p>Paul, B., &amp; Montoya, G. (2020). CRISPR-Cas12a: Functional overview and applications. <i>Biomedical
+
            <i>Biomedical
                 Journal</i>, 43, 8-17. <a href="https://doi.org/10.1016/j.bj.2019.10.005"
+
                 Journal</i>, 43, 8-17. <a href="https://doi.org/10.1016/j.bj.2019.10.005" target="_blank">https://doi.org/10.1016/j.bj.2019.10.005</a>
                target="_blank">https://doi.org/10.1016/j.bj.2019.10.005</a></p>
+
</p>
        <p>Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C., &amp; Doudna, J. A. (2014). DNA interrogation by the
+
<p>Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C., &amp; Doudna, J. A. (2014). DNA
             CRISPR RNA-guided endonuclease Cas9. <i>Nature</i>, 507, 62-67. <a
+
            interrogation by the
                href="https://doi.org/10.1038/nature13011" target="_blank">https://doi.org/10.1038/nature13011</a></p>
+
             CRISPR RNA-guided endonuclease Cas9. <i>Nature</i>, 507, 62-67. <a href="https://doi.org/10.1038/nature13011" target="_blank">https://doi.org/10.1038/nature13011</a></p>
        <p>Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P.,
+
<p>Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S.,
 +
            Essletzbichler, P.,
 
             Volz, S.
 
             Volz, S.
             E., Joung, J., van der Oost, J., Regev, A., Koonin, E. V., &amp; Zhang, F. (2015). Cpf1 is a single
+
             E., Joung, J., van der Oost, J., Regev, A., Koonin, E. V., &amp; Zhang, F. (2015). Cpf1 is a
 +
            single
 
             RNA-guided
 
             RNA-guided
             endonuclease of a class 2 CRISPR-Cas system. <i>Cell</i>, 163, 759-771. <a
+
             endonuclease of a class 2 CRISPR-Cas system. <i>Cell</i>, 163, 759-771. <a href="https://doi.org/10.1016/j.cell.2015.09.038" target="_blank">https://doi.org/10.1016/j.cell.2015.09.038</a>
                href="https://doi.org/10.1016/j.cell.2015.09.038"
+
</p>
                target="_blank">https://doi.org/10.1016/j.cell.2015.09.038</a>
+
</section>
        </p>
+
    </section>
+
 
</body>
 
</body>
 
 
</html>
 
</html>

Revision as of 06:47, 2 October 2024

BBa_K5237000

fgRNA Entry Vector MbCas12a-SpCas9

This part integrates the crRNA of MbCas12a (BBa_K5237206) and the sgRNA of SpCas9 (BBa_K5237209) into a single fusion guide RNA (fgRNA). The fgRNA is functional, meaning that the MbCas12a (BBa_K5237001), SpCas9 (BBa_K5237002) and the fusion dCas (BBa_K5237003) can both utilize the fgRNA to target two different loci simultaneously. The fgRNA also works in combination with the catalytically inactive dCas9 and dCas12a versions. We successfully showed genome editing at two different loci simultaneously using active SpCas9 and Cas12a and induced proximity of two genomic loci with the catalytically inactive dSpCas9 and dMbCas12a.
For our part collection, the PICasSO toolbox, this part is the central key, since it enables to the formation of our CRISPR/Cas staples - trimeric complexes comprised of a fgRNA, dCas9 and dCas12a employed for tethering two distinct genomic loci for 3D genome engineering.

 



The PICasSO Toolbox
Figure 1: How our part collection can be used to engineer new staples


While synthetic biology has in the past focused on engineering the genomic sequence of organisms, the 3D spatial organization of DNA is well-known to be an important layer of information encoding in particular in eukaryotes, playing a crucial role in gene regulation and hence cell fate, disease development, evolution, and more. However, tools to precisely manipulate and control the genomic spatial architecture are limited, hampering the exploration of 3D genome engineering in synthetic biology. We - the iGEM Team Heidelberg 2024 - have developed PICasSO, a powerful molecular toolbox for rationally engineering genome 3D architectures in living cells, based on various DNA-binding proteins.

The PICasSO part collection offers a comprehensive, modular platform for precise manipulation and re-programming of DNA-DNA interactions using engineered "protein staples" in living cells. This enables researchers to recreate naturally occurring alterations of 3D genomic interactions, such as enhancer hijacking in cancer, or to design entirely new spatial architectures for artificial gene regulation and cell function control. Specifically, the fusion of two DNA binding proteins enables to artificially bring otherwise distant genomic loci into spatial proximity. To unlock the system's full potential, we introduce versatile chimeric CRISPR/Cas complexes, connected either at the protein or - in the case of CRISPR/Cas-based DNA binding moieties - the guide RNA level. These complexes are referred to as protein- or Cas staples, respectively. Beyond its versatility with regard to the staple constructs themselves, PICasSO includes robust assay systems to support the engineering, optimization, and testing of new staples in vitro and in vivo. Notably, the PICasSO toolbox was developed in a design-build-test-learn engineering cycle closely intertwining wet lab experiments and computational modeling and iterated several times, yielding a collection of well-functioning and -characterized parts.

At its heart, the PICasSO part collection consists of three categories.
(i) Our DNA-binding proteins include our finalized Cas staple experimentally validated using an artificial "enhancer hijacking" system as well as "half staples" that can be combined by scientists to compose entirely new Cas staples in the future. We also include our Simple staples comprised of particularly small, simple and robust DNA binding domains well-known to the synthetic biology community, which serve as controls for successful stapling and can be further engineered to create alternative, simpler, and more compact staples.
(ii) As functional elements, we list additional parts that enhance and expand the functionality of our Cas and Basic staples. These consist of staples dependent on cleavable peptide linkers targeted by cancer-specific proteases or inteins that allow condition-specific, dynamic stapling in vivo. We also include several engineered parts that enable the efficient delivery of PICasSO's constructs into target cells, including mammalian cells, with our new interkingdom conjugation system.
(iii) As the final category of our collection, we provide parts that underlie our custom readout systems. These include components of our established FRET-based proximity assay system, enabling users to confirm accurate stapling. Additionally, we offer a complementary, application-oriented testing system based on a luciferase reporter, which allows for straightforward experimental assessment of functional enhancer hijacking events in mammalian cells.

The following table gives a comprehensive overview of all parts in our PICasSO toolbox. The highlighted parts showed exceptional performance as described on our iGEM wiki and can serve as a reference. The other parts in the collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their own custom Cas staples, enabling further optimization and innovation in the new field of 3D genome engineering.

Our part collection includes:

DNA-Binding Proteins: Modular building blocks for engineering of custom staples to mediate defined DNA-DNA interactions in vivo
BBa_K5237000 Fusion Guide RNA Entry Vector MbCas12a-SpCas9 Entry vector for simple fgRNA cloning via SapI
BBa_K5237001 Staple Subunit: dMbCas12a-Nucleoplasmin NLS Staple subunit that can be combined with crRNA or fgRNA and dSpCas9 to form a functional staple
BBa_K5237002 Staple Subunit: SV40 NLS-dSpCas9-SV40 NLS Staple subunit that can be combined with a sgRNA or fgRNA and dMbCas12a to form a functional staple
BBa_K5237003 Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS Functional Cas staple that can be combined with sgRNA and crRNA or fgRNA to bring two DNA strands into close proximity
BBa_K5237004 Staple Subunit: Oct1-DBD Staple subunit that can be combined to form a functional staple, for example with TetR.
Can also be combined with a fluorescent protein as part of the FRET proximity assay
BBa_K5237005 Staple Subunit: TetR Staple subunit that can be combined to form a functional staple, for example with Oct1.
Can also be combined with a fluorescent protein as part of the FRET proximity assay
BBa_K5237006 Simple Staple: TetR-Oct1 Functional staple that can be used to bring two DNA strands in close proximity
BBa_K5237007 Staple Subunit: GCN4 Staple subunit that can be combined to form a functional staple, for example with rGCN4
BBa_K5237008 Staple Subunit: rGCN4 Staple subunit that can be combined to form a functional staple, for example with rGCN4
BBa_K5237009 Mini Staple: bGCN4 Assembled staple with minimal size that can be further engineered
Functional Elements: Protease-cleavable peptide linkers and inteins are used to control and modify staples for further optimization for custom applications
BBa_K5237010 Cathepsin B-cleavable Linker: GFLG Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make responsive staples
BBa_K5237011 Cathepsin B Expression Cassette Expression cassette for the overexpression of cathepsin B
BBa_K5237012 Caged NpuN Intein A caged NpuN split intein fragment that undergoes protein trans-splicing after protease activation, which can be used to create functionalized staple subunits
BBa_K5237013 Caged NpuC Intein A caged NpuC split intein fragment that undergoes protein trans-splicing after protease activation, which can be used to create functionalized staple subunits
BBa_K5237014 Fusion Guide RNA Processing Casette Processing cassette to produce multiple fgRNAs from one transcript, that can be used for multiplexed 3D genome reprogramming
BBa_K5237015 Intimin anti-EGFR Nanobody Interkingdom conjugation between bacteria and mammalian cells, as an alternative delivery tool for large constructs
BBa_K4643003 IncP Origin of Transfer Origin of transfer that can be cloned into the plasmid vector and used for conjugation as a means of delivery
Readout Systems: FRET and enhancer recruitment readout systems to rapidly assess successful DNA stapling in bacterial and mammalian cells
BBa_K5237016 FRET-Donor: mNeonGreen-Oct1 FRET donor-fluorophore fused to Oct1-DBD that binds to the Oct1 binding cassette, which can be used to visualize DNA-DNA proximity
BBa_K5237017 FRET-Acceptor: TetR-mScarlet-I Acceptor part for the FRET assay binding the TetR binding cassette, which can be used to visualize DNA-DNA proximity
BBa_K5237018 Oct1 Binding Casette DNA sequence containing 12 Oct1 binding motifs, compatible with various assays such as the FRET proximity assay
BBa_K5237019 TetR Binding Cassette DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the FRET proximity assay
BBa_K5237020 Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64 Readout system that responds to protease activity, which was used to test cathepsin B-cleavable linker
BBa_K5237021 NLS-Gal4-VP64 Trans-activating enhancer, that can be used to simulate enhancer hijacking
BBa_K5237022 mCherry Expression Cassette: UAS, minimal Promoter, mCherry Readout system for enhancer binding, which was used to test cathepsin B-cleavable linker
BBa_K5237023 Oct1 - 5x UAS Binding Casette Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay
BBa_K5237024 TRE-minimal Promoter- Firefly Luciferase Contains firefly luciferase controlled by a minimal promoter, which was used as a luminescence readout for simulated enhancer hijacking

1. Sequence overview

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal NheI site found at 339
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI site found at 571
    Illegal SapI site found at 662
    Illegal SapI.rc site found at 280

2. Usage and Biology

2.1 Discovery and Mechanism of CRISPR/Cas9

Figure 2: The CRISPR/Cas System A and B, schematic structure of Cas9 and Cas12a with their sgRNA/crRNA, sitting on a DNA strand with their respective PAMs. The sgRNA/crRNA spacer sequence binds the DNA target strand via complementary base pairing. In case of Cas9 the spacer is located at the 5' prime end, for Cas12a at the 3' end of the gRNA. The scaffold of the gRNA forms a specific secondary structure enabling it to be bound by the Cas protein. DNA cleavage sites are indicated by the scissors.

In 2012, Jinek et al. discovered the use of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas system to induce double-strand breaks in DNA in a programmable manner. Since then, the system has been well established as a tool for genome editing. The CRISPR/Cas system, which originates from the bacterial immune system, is constituted by a ribonucleoprotein complex. For class 1 CRISPR systems, an RNA guide is complexed by multiple Cas proteins, whereas class 2 systems consist of a singular protein binding RNA. The class 2 type II system describes all ribonucleoprotein complexes with Cas9 (Pacesa et al., 2024). They include a CRISPR RNA (crRNA), which specifies the target sequence with a ~20 nucleotide (nt) spacer sequence, and a transactivating CRISPR RNA (tracrRNA), which induces the processing by the Cas protein (Jinek et al., 2012) (Fig. 2 A). Furthermore, a specific three nucleotide sequence (NGG) at the 3' end in the targeted DNA is needed for Cas9 DNA binding and cleavage. This is referred to as the protospacer adjacent motif (PAM) (Sternberg et al., 2014). The most commonly used Cas9 protein is SpCas9 or SpyCas9, which originates from Streptococcus pyogenes (Pacesa et al., 2024).

A significant enhancement of the CRISPR/Cas9 system was the introduction of single guide RNAs (sgRNA[s]), which combine the functions of a tracrRNA and crRNA (Jinek et al., 2012; Mali et al., 2013). Moreover, Cong et al. (2013) established precise targeting of human endogenous loci by designing the 20 nt spacer sequence accordingly.

2.2 Differences between Cas9 and Cas12a

Over the following years, several additional class 2 CRISPR/Cas systems have been discovered, including the Cpf1 system, which has been classified as Cas12a since then (Zetsche et al., 2015). Cas12a forms a class 2 type V system. In contrast to the type II systems, the Cas12a RNA guide only requires a crRNA to mediate Cas12a DNA targeting. Moreover, Cas12a is capable of processing long precursor crRNA transcripts into several, single/independent crRNAs, whereas Cas9 requires the RNase III enzyme and tracrRNA for this process (Paul and Montoya, 2020). This crRNA is often also referred to as a guide RNA (gRNA). However, the stem loop that is formed when binding the Cas protein is structurally distinct to the Cas9 gRNA and positioned on the 5' side of the crRNA (Fig. 2 B). Similarly, the PAM (TTTV) is also on the 5' side (Pacesa et al., 2024). Cas9 possesses RuvC and HNH domains that are catalytically active, each of which cleaves one of the DNA strands at the same site, resulting in the formation of blunt end cuts (Nishimasu et al., 2014). Cas12a possesses one RuvC-like domain that creates staggered cuts with overhangs that are about 5nt long (Paul and Montoya, 2020).

2.3 Dead Cas Proteins and their Application

Specific mutations of these domains result in catalytic inactivity and therefore allow for the creation of nickases that only cut one of the DNA strands, or Cas protein mutants that retain their DNA binding capability, but have no catalytic activity (Koonin et al., 2023) (Kleinstiver et al., 2019). The latter are referred to as dead Cas proteins or dCas9 and dCas12a. These Cas proteins can be used to activate (CRISPRa) or inhibit (CRISPRi) the expression of genes by fusing them to effector domains and targeting the respective genes via complementary spacer sequences (Kampmann, 2017). A common approach for CRISPRa involves fusing Cas9 with the transcriptional activator, such as VP64 or VPR (Kampmann, 2017).

3. Assembly and Part Evolution

Building on insights of our fusion Cas engineering cycle and findings from Kweon (2017), fgRNAs were designed by combining the sgRNA from SpCas9 with the crRNA from MbCas12a. Specifically the 3'-end of the MbCas12a gRNA was linked to the 5'-end of the SpCas9 gRNA (through genetic fusion). Via this approach, the two spacer sequences are fused directly, ensuring a minimal distance between the two DNA strands to be co-bound by the Cas staple complex. This also facilitates efficient cloning of different spacer sequences, as both spacers can be obtained as one consecutive sequence encoded on a single oligo. Linking the crRNA and sgRNA further enables multiplexing, as Cas12a can inherently process crRNA repeats that are expressed from one single transcript, enabling multiplexing. The entry vector includes a U6 promoter, the MbCas12a scaffold, a bacterial promoter driving ccdB expression, and the SpCas9 scaffold. Successful spacer integration leads to the removal of the ccdB gene, allowing bacterial growth to be used as an indicator for cloning success.
A conventional gRNA expression vector containing an MbCas12a crRNA scaffold under the control of an U6 promoter was selected as the basis for entry vector cloning. The vector and a ccdB-SpCas9 scaffold construct were PCR amplified and fitting overhangs for SapI were introduced (Fig. 3). Golden Gate assembly (GGA) with Esp3I was used to create the final plasmid. The transformation was carried out in the ccdB-resistant XL1 Blue E. Coli strain.

Figure 3: Construction Process of fgRNAs Using the Entry Vector. The ccdB gene excised using SapI in a Golden Gate assembly. By inserting oligonucleotides with the desired spacer sequences and matching overhangs, the complete fgRNA can be assembled into the entry vector. Due to the cytotoxic nature of ccdB, only cells with the oligonucleotides as inserts survive.

The first goal following successful assembly of our first fgRNAs was to show the simultaneous editing of the two fgRNA-targeted genomic sites in mammalian cells (HEK239T). The genes VEGFA and FANCF were selected as targets for Cas12a and Cas9 and each target was tested with each Cas protein using corresponding fgRNA designs. Editing efficiency was analyzed with the T7 Endonuclease I (T7EI) assay widely used in the CRISPR field. Controls included the use of conventional crRNAs and sgRNAs with their cognate Cas effectors as positive controls, and non-targeting guides as negative controls. Desired spacer sequences were ordered as synthetic oligos, annealed, and cloned in via GGA utilizing SapI.

Figure 4: Applications of the Fusion Guide RNA Fusion Guide RNAs can be used for multiplex genome editing by guiding active Cas12a and Cas9 to two distinct loci. Similarly, fgRNAs allow for CRISPRa, by guiding the Cas9-VP64 transcriptional activator towards a target locus.
Table 1: A list of all the different spacers we cloned and tested within the fgRNA
CCR5 TGACATCAATTATTATACAT
Dnmt1 GCTCAGCAGGCACCTGCCTC
Fancf GGCGGGGTCCAGTTCCGGGA
Oct1 (BBa_K5237018) ATGCAAATACTGCACTAGTG
Runx1 CCTTCGGAGCGAAAACCAAG
TetO (BBa_K5237019) TCTCTATCACTGATAGGGAG
VEGFA CTAGGAATATTGAAGGGGGC
Table 2: A list of all the different linkers we cloned and tested within the fgRNA
5 nt linker ATGCG
10 nt linker ATGCGAGCTG
10 nt Poly A linker CAAAACAACA
20 nt linker TGGCGGCGTGCTGACCGCTA
20 nt Poly A linker CAAAACAACAATCAAAACAA
30 nt Poly A linker CAAAACAACAATCAAAACAA
ATCAAAACAA
40 nt Poly A linker CAAAACAACAATCAAAACAACAAAACAA
CAATCAAAACAA

We constructed a second entry vector incorporating an AsCas12a scaffold (5' taatttctactcttgtagat 3') instead of MbCas12a. The sequence of the AsCas12a scaffold was the only modification in the composite part. This vector was tested on the loci VEGFA and FANCF to assess its functionality.

4. Results

4.1 Editing endogenous loci with fgRNAs

To prove that our fusion gRNAs still result in active ribonucleoproteins, a series of different fgRNAs were created, each carrying spacers specific to the VEGFA and FANCF genes.HEK293-T cells were transfected with the Cas protein and gRNA constructs. The editing rate was tested 72h after transfection via a T7 endonuclease I assay.
AsCas12a and SpCas9 were used. The AsCas12a spacer targets VEGFA, while the SpCas9 spacer targets FANCF. The samples included standard single gRNAs with the corresponding Cas protein, the fgRNA with only one of the two Cas proteins and the fgRNA with both Cas proteins simultaneously (Fig. 5). The sgRNAs allowed for the highest editing rates for both genes (45% for VEGFA and 15% for FANCF), while the editing rates for FANCF were consistently lower in all experiments. Importantly, targeting FANCF with fgRNAs resulted in noticeable editing of about 10%, with just the SpCas9 and both Cas proteins in the sample. For VEGFA, the AsCas12a only sample resulted in approximately 20% editing rate in combination with the fgRNA, while adding both Cas proteins led to approximately 40%. These initial results confirmed our engineering approach proving efficient genome editing with fgRNAs.

Figure 5: fgRNAs Enable Efficient Editing of Endogenous Loci. The editing rates were determined 72h after transfection via T7EI assay. Editing % was determined by measuring band intensities; Editing % = 100 x (1 - (1- cleaved band/uncleaved band))1/2. The schematic at the top shows the composition of the fgRNA. Below each spacer is the targeted gene. The symbols below indicate which parts are included in each sample.

4.2 Efficient Fusion Guide RNA-Mediated Editing With Various Cas Orthologs

After showing efficient editing, the next step was to evaluate the capabilities of the fgRNAs, we tested them in combination with different Cas12a orthologs. After some initial testing, we decided on using MbCas12a together with SpCas9, because we found AsCas12a to be less active in a dual luciferase assay when co-transfected with SpCas9 compared to MbCas12a (Fig. 6). Between these two co-transfections the SpCas9 editing has not been significantly different.

Figure 6: Comparison of AsCas12a and MbCas12a with a Dual Luciferase Assay. Firefly luminescence intensity measured 48 h after transfection. Normalized against renilla luminescence. On the x-axis the samples Cas9 + AsCas12a , Cas9 + MbCas12a, AsCas12a and MbCas12a are depicted. Data is depicted as the mean +/- SD (n=3). Statistical analysis was performed using 1way ANOVA with Tukey's multiple comparisons test. For better clarity, only significant differences within a group between the same Cas proteins are shown.*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001

Additionally, to test if the differences in editing rates from the preliminary assay resulted from the targeted loci or the different Cas orthologs, the spacers were tested in both arrangements. Once with Cas12a targeting FANCF and SpCas9 targeting VEGFA and once vice versa. To better assess the impact that the utilization of a fgRNA has on the editing rates, the sgRNAs were tested separately and in one sample.
Having the sgRNA with single Cas proteins in the same sample resulted in no clear difference in the editing rates (Fig. 7). The fusion of the gRNAs resulted in a lower editing rate overall. While the editing for VEGFA stayed at about 20% in all cases, the editing for FANCF dropped significantly. When targeting the same gene under the same conditions, the editing rates for MbCas12a were overall lower than the ones from SpCas9.

Figure 7: Fusion gRNA Editing Rates In Combination with MbCas12a. In A and B the editing rates were determined 72h after transfection via T7EI assay. Editing % was determined by measuring band intensities; Editing % = 100 x (1 - (1- cleaved band/uncleaved band) 1/2). The schematic at the top shows the composition of the fgRNA. Below each spacer is the targeted gene. The symbols below indicate which parts are included in each sample. A and B display both orientations of the two spacers for VEGFA and FANCF.

4.3 The Inclusion of a Linker Does Not Lower Editing Rates

To further assess the effect of the genomic locus on the editing rate, we included CCR5 as an additional gene target. For this assay, a fgRNA with a 20 nt long linker was included between the two spacers. The editing rate for VEGFA was again relatively consistent throughout the samples (Fig. 8). For CCR5, the editing rate with sgRNAs was approximately the same at about 30%. However, it dropped below 10% for the fgRNA. The addition of the 20 nt linker had no effect on the editing rates compared to no linker.

Figure 8: Fusion gRNA Editing Rates for Multiplexing CCR5 and VEGFA The editing rates were determined 72h after transfection via T7EI assay. Editing % was determined by measuring band intensities; Editing % = 100 x (1 - (1- cleaved band/uncleaved band))1/2. The schematic at the top shows the composition of the fgRNA. Below each spacer is the targeted gene. The symbols below indicate which parts are included in each sample. Cas12a targets VEGFA and Cas9 targets CCR5.

4.4 Fusion Guide RNAs can be Used for CRISPRa

To establish the foundation for their use as protein scaffolds, we identified the next step as demonstrating the use of fgRNAs for CRISPRa. For this, we intend to recruit the transcriptional activator VP64 to a firefly luciferase gene to induce expression. The VP64 protein is attached to the catalytically inactive Cas9 protein, which is then guided by gRNAs to the luciferase gene. The gRNAs target a TetO sequence, which is positioned in front of the luciferase gene in multiple repeats. The firefly luciferase activity was then quantified as photon counts and normalized against Renilla luciferase, which is expressed on a separate plasmid under an ubiquitous promoter. In two biological replicates we saw similar relative luciferase activity with fgRNA as a guide compared to a sgRNA (Fig. 9).

Figure 9: CRISPRa Induced Luciferase Expression for sgRNAs and fgRNAs. Firefly luciferase activity was measured 48h after transfection. Normalized against ubiquitously expressed Renilla luciferase. The tetO repeats were targeted by Cas9-VP64, once with a sgRNA and once with a fgRNA that had a non-targeting sequence for the Cas12a spacer. The schematic at the top shows the composition of the fgRNA. Below each spacer is the targeted gene. The symbols below indicate which parts are included in each sample.

4.5 Stapling Two DNA Strands Together Using fgRNAs

After showing the general capability of the fgRNA to work for editing and for CRISPR activation, the next step was to use it to staple two DNA loci together, and thereby induce proximity between two separate functional elements. For this, an enhancer plasmid and a reporter plasmid was used. The reporter plasmid has firefly luciferase behind several repeats of a Cas9 targeted sequence. The enhancer plasmid has a Gal4 binding site behind several repeats of a Cas12a targeted sequence. By introducing a fgRNA staple and a Gal4-VP64, expression of the luciferase is induced (Fig. 10, Panel A). Different linker lengths were tested. Cells were again normalized against ubiquitous renilla expression.
Using no linker between the two spacers showed similar relative luciferase activity to the baseline control (Fig. 10, Panel B). An extension of the linker from 20 nt up to 40 nt resulted in an increasingly higher expression of the reporter gene. These results suggest an extension of the linker might lead to better transactivation when hijacking an enhancer/activator.

Figure 10: Applying Fusion Guide RNAs for Cas staples. A, schematic overview of the assay. An enhancer plasmid and a reporter plasmid are brought into proximity by a fgRNA Cas staple complex binding both plasmids. Target sequences were included in multiple repeats prior to the functional elements. Firefly luciferase serves as the reporter gene, the enhancer is constituted by multiple Gal4 repeats that are bound by a Gal4-VP64 fusion. B, results of using a fgRNA Cas staple for trans activation of firefly luciferase. Firefly luciferase activity was measured 48h after transfection. Normalized against ubiquitously expressed Renilla luciferase. Statistical significance was calculated with ordinary One-way ANOVA with Dunn's method for multiple comparisons (*p < 0.05; **p < 0.01; ***p < 0.001; mean +/- SD). The assay included sgRNAs and fgRNAs with linker lengths from 0 nt to 40 nt.

5. References

Aregger, M., Xing, K., & Gonatopoulos-Pournatzis, T. (2021). Application of CHyMErA Cas9-Cas12a combinatorial genome-editing platform for genetic interaction mapping and gene fragment deletion screening. Nature Protocols, 16, 4722-4765. https://doi.org/10.1038/s41596-021-00595-1

Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819-823. https://doi.org/10.1126/science.1231143

Gonatopoulos-Pournatzis, T., Aregger, M., Brown, K. R., Farhangmehr, S., Braunschweig, U., Ward, H. N., Ha, K. C. H., Weiss, A., Billmann, M., Durbic, T., Myers, C. L., Blencowe, B. J., & Moffat, J. (2020). Genetic interaction mapping and exon-resolution functional genomics with a hybrid Cas9-Cas12a platform. Nature Biotechnology, 38, 638-648. https://doi.org/10.1038/s41587-020-0437-z

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816-821. https://doi.org/10.1126/science.1225829

Kampmann, M. (2017). CRISPRi and CRISPRa screens in mammalian cells for precision biology and medicine. ACS Chemical Biology, 13, 406-416. https://doi.org/10.1021/acschembio.7b00657

Kleinstiver, B. P., Sousa, A. A., Walton, R. T., Tak, Y. E., Hsu, J. Y., Clement, K., Welch, M. M., Horng, J. E., Malagon-Lopez, J., Scarfò, I., Maus, M. V., Pinello, L., Aryee, M. J., & Joung, J. K. (2019). Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nature Biotechnology, 37, 276-282. https://doi.org/10.1038/s41587-018-0011-0

Koonin, E. V., Gootenberg, J. S., & Abudayyeh, O. O. (2023). Discovery of diverse CRISPR-Cas systems and expansion of the genome engineering toolbox. Biochemistry, 62, 3465-3487. https://doi.org/10.1021/acs.biochem.3c00159

Kweon, J., Jang, A.-H., Kim, D.-e., Yang, J. W., Yoon, M., Rim Shin, H., Kim, J.-S., & Kim, Y. (2017). Fusion guide RNAs for orthogonal gene manipulation with Cas9 and Cpf1. Nature Communications, 8. https://doi.org/10.1038/s41467-017-01650-w

Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., & Church, G. M. (2013). RNA-guided human genome engineering via Cas9. Science, 339, 823-826. https://doi.org/10.1126/science.1232033

Nishimasu, H., Ran, F. A., Hsu, P. D., Konermann, S., Shehata, S. I., Dohmae, N., Ishitani, R., Zhang, F., & Nureki, O. (2014). Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 156, 935-949. https://doi.org/10.1016/j.cell.2014.02.001

Pacesa, M., Pelea, O., & Jinek, M. (2024). Past, present, and future of CRISPR genome editing technologies. Cell, 187, 1076-1100. https://doi.org/10.1016/j.cell.2024.01.042

Paul, B., & Montoya, G. (2020). CRISPR-Cas12a: Functional overview and applications. Biomedical Journal, 43, 8-17. https://doi.org/10.1016/j.bj.2019.10.005

Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C., & Doudna, J. A. (2014). DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature, 507, 62-67. https://doi.org/10.1038/nature13011

Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P., Volz, S. E., Joung, J., van der Oost, J., Regev, A., Koonin, E. V., & Zhang, F. (2015). Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 163, 759-771. https://doi.org/10.1016/j.cell.2015.09.038