Difference between revisions of "Part:BBa K5115042"

Line 3: Line 3:
 
<partinfo>BBa_K5115042 short</partinfo>
 
<partinfo>BBa_K5115042 short</partinfo>
  
<html><img style="float:right;width:128px" src="https://static.igem.wiki/teams/5115/czh/mineral-logo.svg" alt="contributed by Fudan iGEM 2023"></html>
+
<html><img style="float:right;width:128px" src="https://static.igem.wiki/teams/5115/czh/mineral-logo.svg" alt="contributed by Fudan iGEM 2024"></html>
 
__TOC__
 
__TOC__
 
===Introduction===
 
===Introduction===
Line 13: Line 13:
 
To ascertain which order the three proteins should be assembled for the best results, we create six different parts containing all the sequential possibilities. We finally confirm that the order of the three parts don't affect much on their effect. We choose to use [https://parts.igem.org/Part:BBa_K5115038 ribozyme connected: MTA, hpn, RcnR_C35L] at last, please check it for the experiment results.
 
To ascertain which order the three proteins should be assembled for the best results, we create six different parts containing all the sequential possibilities. We finally confirm that the order of the three parts don't affect much on their effect. We choose to use [https://parts.igem.org/Part:BBa_K5115038 ribozyme connected: MTA, hpn, RcnR_C35L] at last, please check it for the experiment results.
  
 +
===Sequence and Features===
 
<!-- -->
 
<!-- -->
 
<span class='h3bb'>Sequence and Features</span>
 
<span class='h3bb'>Sequence and Features</span>

Revision as of 10:19, 2 October 2024


ribozyme connected: MTA, RcnR_C35L, Hpn

contributed by Fudan iGEM 2024

Introduction

This composite part combines BBa_K5115035(ribozyme+RBS+MTA+stem-loop), BBa_K5115033(ribozyme+RBS+RcnR_C35L+stem-loop) and BBa_K5115036(ribozyme+RBS+hpn+stem-loop). We introduced this ribozyme-assisted polycistronic co-expression system from 2022. By inserting ribozyme sequences between CDSs in a polycistron, the RNA sequences of Twister ribozyme conduct self-cleaving, and the polycistronic mRNA transcript is thus co-transcriptionally converted into individual mono-cistrons in vivo.

With this design, we achieve co-expression of MTA, hpn, RcnR C35L at similar level. MTA is a protein that can bind with nickel ions to reduce its toxicity to the E.coli. The hpn is a protein that can sequester metals that accumulate internally to reduce nickel's toxicity to the E.coli. RcnR C35L can regulate the nickel ion channel proteins in the cell membrane to tune the nickel ion transport rate.

Usage and Biology

To ascertain which order the three proteins should be assembled for the best results, we create six different parts containing all the sequential possibilities. We finally confirm that the order of the three parts don't affect much on their effect. We choose to use ribozyme connected: MTA, hpn, RcnR_C35L at last, please check it for the experiment results.

Sequence and Features

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 642
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 198
  • 1000
    COMPATIBLE WITH RFC[1000]


References