Difference between revisions of "Part:BBa K5302005"

Line 1: Line 1:
 +
 +
__NOTOC__
 +
<partinfo>BBa_K5302005 short</partinfo>
 +
 
This year, the USTC iGEM team has utilized the competitive binding of vascular endothelial growth factor (VEGF) to develop a targeted bacterial therapy for solid tumors. Our quest for the optimal VEGF-binding protein(or peptide) led us to an in-depth exploration of proteins structurally akin to the vascular endothelial growth factor receptor (VEGFR), which we have named VEGFR-like. This part is derived from three helix 58-residue Z-domain of staphylococcal protein A. And through stabilizing mutations and the addition of a disulfide constraint the Z-domain is reengineered into a two-helix 34-residue “mini-Z” version that retains the parent's affinity. This is supposed to be more potent binders against VEGF.
 
This year, the USTC iGEM team has utilized the competitive binding of vascular endothelial growth factor (VEGF) to develop a targeted bacterial therapy for solid tumors. Our quest for the optimal VEGF-binding protein(or peptide) led us to an in-depth exploration of proteins structurally akin to the vascular endothelial growth factor receptor (VEGFR), which we have named VEGFR-like. This part is derived from three helix 58-residue Z-domain of staphylococcal protein A. And through stabilizing mutations and the addition of a disulfide constraint the Z-domain is reengineered into a two-helix 34-residue “mini-Z” version that retains the parent's affinity. This is supposed to be more potent binders against VEGF.
 
We used pBBR1MCS-2 plasmid as a backbone and transfered miniZ into Escherichia coli Nissle 1917, and finally succeeded in expressing miniZ.
 
We used pBBR1MCS-2 plasmid as a backbone and transfered miniZ into Escherichia coli Nissle 1917, and finally succeeded in expressing miniZ.
 +
 +
<!-- Add more about the biology of this part here
 +
===Usage and Biology===
 +
 +
<!-- -->
 +
<span class='h3bb'>Sequence and Features</span>
 +
<partinfo>BBa_K5302005 SequenceAndFeatures</partinfo>
 +
 +
 +
<!-- Uncomment this to enable Functional Parameter display
 +
===Functional Parameters===
 +
<partinfo>BBa_K5302005 parameters</partinfo>
 +
<!-- -->

Revision as of 04:23, 1 October 2024


miniZ

This year, the USTC iGEM team has utilized the competitive binding of vascular endothelial growth factor (VEGF) to develop a targeted bacterial therapy for solid tumors. Our quest for the optimal VEGF-binding protein(or peptide) led us to an in-depth exploration of proteins structurally akin to the vascular endothelial growth factor receptor (VEGFR), which we have named VEGFR-like. This part is derived from three helix 58-residue Z-domain of staphylococcal protein A. And through stabilizing mutations and the addition of a disulfide constraint the Z-domain is reengineered into a two-helix 34-residue “mini-Z” version that retains the parent's affinity. This is supposed to be more potent binders against VEGF. We used pBBR1MCS-2 plasmid as a backbone and transfered miniZ into Escherichia coli Nissle 1917, and finally succeeded in expressing miniZ.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]