Difference between revisions of "Part:BBa K5237013"

Line 66: Line 66:
  
 
   <section>
 
   <section>
 +
<p><br><br></p>
 
     <font size="5"><b>The PICasSO Toolbox </b> </font>
 
     <font size="5"><b>The PICasSO Toolbox </b> </font>
    <p><br></p>
+
 
     <div class="thumb"></div>
+
     <div class="thumb" style="margin-top:10px;"></div>
 
       <div class="thumbinner" style="width:550px"><img alt="" src="https://static.igem.wiki/teams/5237/wetlab-results/registry-part-collection-engineering-cycle-example-overview.svg" style="width:99%;" class="thumbimage">
 
       <div class="thumbinner" style="width:550px"><img alt="" src="https://static.igem.wiki/teams/5237/wetlab-results/registry-part-collection-engineering-cycle-example-overview.svg" style="width:99%;" class="thumbimage">
 
         <div class="thumbcaption">
 
         <div class="thumbcaption">
           <i><b>Figure 1: Example how the part collection can be used to engineer new staples</b></i>
+
           <i><b>Figure 1: How our part collection can be used to engineer new staples</b></i>
 
         </div>
 
         </div>
 
       </div>
 
       </div>
Line 79: Line 80:
 
     <p>
 
     <p>
 
       <br>
 
       <br>
       The 3D organization of the genome plays a crucial role in regulating gene expression in eukaryotic cells,
+
       Next to the well-studied linear DNA sequence, the 3D spatial organization of DNA plays a crucial role in gene regulation,
       impacting cellular behavior, evolution, and disease. Beyond the linear DNA sequence, the spatial arrangement of
+
       cell fate, disease development and more. However, the tools to precisely manipulate this genomic architecture remain limited, rendering it challenging to explore the full potential of the
      chromatin, influenced by DNA-DNA interactions, shapes pathways of gene regulation. However, the tools to precisely
+
      manipulate this genomic architecture remain limited, rendering it challenging to explore the full potential of the
+
 
       3D genome in synthetic biology. We - iGEM Team Heidelberg 2024 - have developed PICasSO, a powerful molecular
 
       3D genome in synthetic biology. We - iGEM Team Heidelberg 2024 - have developed PICasSO, a powerful molecular
 
       toolbox based on various DNA-binding proteins to address this issue.
 
       toolbox based on various DNA-binding proteins to address this issue.
 
 
     </p>
 
     </p>
 
     <p>
 
     <p>
Line 94: Line 92:
 
       Beyond its versatility, PICasSO includes robust assay systems to support the engineering, optimization, and
 
       Beyond its versatility, PICasSO includes robust assay systems to support the engineering, optimization, and
 
       testing of new staples, ensuring functionality <i>in vitro</i> and <i>in vivo</i>. We took special care to include
 
       testing of new staples, ensuring functionality <i>in vitro</i> and <i>in vivo</i>. We took special care to include
       parts crucial for testing every step of the cycle (design, build, test, learn) when engineering new parts
+
       parts crucial for testing every step of the cycle (design, build, test, learn) when engineering new parts.
 
     </p>
 
     </p>
  
Line 100: Line 98:
 
       include our
 
       include our
 
       finalized enhancer hijacking Cas staple as well as half staples that can be used by scientists to compose entirely
 
       finalized enhancer hijacking Cas staple as well as half staples that can be used by scientists to compose entirely
       new Cas staples in the future. We also include our simple staples that serve as controls for successful stapling
+
       new Cas staples in the future. We also include our Simple staples that serve as controls for successful stapling
 
       and can be further engineered to create alternative, simpler and more compact staples. <br>
 
       and can be further engineered to create alternative, simpler and more compact staples. <br>
 
       <b>(ii)</b> As <b>functional elements</b>, we list additional parts that enhance the functionality of our Cas and Basic staples. These
 
       <b>(ii)</b> As <b>functional elements</b>, we list additional parts that enhance the functionality of our Cas and Basic staples. These
Line 107: Line 105:
 
       Besides staple functionality, we also include the parts to enable the efficient delivery of PICasSO's constructs with our
 
       Besides staple functionality, we also include the parts to enable the efficient delivery of PICasSO's constructs with our
 
       interkingdom conjugation system. <br>
 
       interkingdom conjugation system. <br>
       <b>(iii)</b> As the final component of our collection, we provide parts that support the use of our <b>custom readout
+
       <b>(iii)</b> As the final category of our collection, we provide parts that support the use of our <b>custom readout
 
         systems</b>. These include components of our established FRET-based proximity assay system, enabling users to
 
         systems</b>. These include components of our established FRET-based proximity assay system, enabling users to
 
       confirm
 
       confirm
 
       accurate stapling. Additionally, we offer a complementary, application-oriented testing system for functional
 
       accurate stapling. Additionally, we offer a complementary, application-oriented testing system for functional
       readout via a luciferase reporter, which allows for straightforward experimental simulation of enhancer hijacking.
+
       readouts via a luciferase reporter, which allows for straightforward experimental simulation of enhancer hijacking in mammalian cells.
 
     </p>
 
     </p>
 
     <p>
 
     <p>
       The following table gives a complete overview of all parts in our PICasSO toolbox. The highlighted parts showed
+
       The following table gives a comprehensive overview of all parts in our PICasSO toolbox. <mark style="background-color: #FFD700; color: black;">The highlighted parts showed
       exceptional performance as described on our iGEM wiki and can serve as a reference. The other parts in the
+
       exceptional performance as described on our iGEM wiki and can serve as a reference.</mark> The other parts in the
 
       collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their
 
       collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their
 
       own custom Cas staples, enabling further optimization and innovation.<br>
 
       own custom Cas staples, enabling further optimization and innovation.<br>
Line 123: Line 121:
 
     </p>
 
     </p>
  
     <table style="width: 90%;">
+
     <table style="width: 90%; padding-right:10px;">
 
       <td colspan="3" align="left"><b>DNA-binding proteins: </b>
 
       <td colspan="3" align="left"><b>DNA-binding proteins: </b>
 
         The building blocks for engineering of custom staples for DNA-DNA interactions with a modular system ensuring
 
         The building blocks for engineering of custom staples for DNA-DNA interactions with a modular system ensuring
Line 130: Line 128:
 
         <tr bgcolor="#FFD700">
 
         <tr bgcolor="#FFD700">
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237000" target="_blank">BBa_K5237000</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237000" target="_blank">BBa_K5237000</a></td>
           <td>fgRNA Entryvector MbCas12a-SpCas9</td>
+
           <td>fgRNA Entry vector MbCas12a-SpCas9</td>
 
           <td>Entryvector for simple fgRNA cloning via SapI</td>
 
           <td>Entryvector for simple fgRNA cloning via SapI</td>
 
         </tr>
 
         </tr>
         <tr>
+
         <tr bgcolor="#FFD700">
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237001" target="_blank">BBa_K5237001</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237001" target="_blank">BBa_K5237001</a></td>
 
           <td>Staple subunit: dMbCas12a-Nucleoplasmin NLS</td>
 
           <td>Staple subunit: dMbCas12a-Nucleoplasmin NLS</td>
           <td>Staple subunit that can be combined to form a functional staple, for example with fgRNA and dCas9 </td>
+
           <td>Staple subunit that can be combined with sgRNA or fgRNA and dCas9 to form a functional staple</td>
 
         </tr>
 
         </tr>
         <tr>
+
         <tr bgcolor="#FFD700">
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237002" target="_blank">BBa_K5237002</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237002" target="_blank">BBa_K5237002</a></td>
 
           <td>Staple subunit: SV40 NLS-dSpCas9-SV40 NLS</td>
 
           <td>Staple subunit: SV40 NLS-dSpCas9-SV40 NLS</td>
           <td>Staple subunit that can be combined to form a functional staple, for example with our fgRNA or dCas12a
+
           <td>Staple subunit that can be combined witha sgRNA or fgRNA and dCas12avto form a functional staple
 
           </td>
 
           </td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237003" target="_blank">BBa_K5237003</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237003" target="_blank">BBa_K5237003</a></td>
           <td>Cas-Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS</td>
+
           <td>Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS</td>
           <td>Functional Cas staple that can be combined with sgRNA or fgRNA to bring two DNA strands in close proximity
+
           <td>Functional Cas staple that can be combined with sgRNA or fgRNA to bring two DNA strands into  close proximity
 
           </td>
 
           </td>
 
         </tr>
 
         </tr>
Line 164: Line 162:
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237006" target="_blank">BBa_K5237006</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237006" target="_blank">BBa_K5237006</a></td>
           <td>Simple taple: TetR-Oct1</td>
+
           <td>Simple staple: TetR-Oct1</td>
 
           <td>Functional staple that can be used to bring two DNA strands in close proximity</td>
 
           <td>Functional staple that can be used to bring two DNA strands in close proximity</td>
 
         </tr>
 
         </tr>
Line 185: Line 183:
 
       </tbody>
 
       </tbody>
 
       <td colspan="3" align="left"><b>Functional elements: </b>
 
       <td colspan="3" align="left"><b>Functional elements: </b>
         Protease cleavable peptide linkers and inteins are used to control and modify staples for further optimization
+
         Protease-cleavable peptide linkers and inteins are used to control and modify staples for further optimization
         for custom applications.</td>
+
         for custom applications</td>
 
       <tbody>
 
       <tbody>
 
         <tr bgcolor="#FFD700">
 
         <tr bgcolor="#FFD700">
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237010" target="_blank">BBa_K5237010</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237010" target="_blank">BBa_K5237010</a></td>
           <td>Cathepsin B-Cleavable Linker (GFLG)</td>
+
           <td>Cathepsin B-cleavable Linker: GFLG</td>
           <td>Cathepsin B cleavable peptide linker, that can be used to combine two staple subunits, to make responsive
+
           <td>Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make responsive
 
             staples</td>
 
             staples</td>
 
         </tr>
 
         </tr>
Line 197: Line 195:
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237011" target="_blank">BBa_K5237011</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237011" target="_blank">BBa_K5237011</a></td>
 
           <td>Cathepsin B Expression Cassette</td>
 
           <td>Cathepsin B Expression Cassette</td>
           <td>Cathepsin B which can be selectively express to cut the cleavable linker</td>
+
           <td>Expression Cassette for the overexpression of cathepsin B</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237012" target="_blank">BBa_K5237012</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237012" target="_blank">BBa_K5237012</a></td>
 
           <td>Caged NpuN Intein</td>
 
           <td>Caged NpuN Intein</td>
           <td>Undergoes protein transsplicing after protease activation, can be used to create functionalized staple
+
           <td>A caged NpuN split intein fragment that undergoes protein <i>trans</i>-splicing after protease activation. Can be used to create functionalized staples
 
             units</td>
 
             units</td>
 
         </tr>
 
         </tr>
Line 208: Line 206:
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237013" target="_blank">BBa_K5237013</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237013" target="_blank">BBa_K5237013</a></td>
 
           <td>Caged NpuC Intein</td>
 
           <td>Caged NpuC Intein</td>
           <td>Undergoes protein transsplicing after protease activation, can be used to create functionalized staple
+
           <td>A caged NpuC split intein fragment that undergoes protein <i>trans</i>-splicing after protease activation. Can be used to create functionalized staples
 
             units</td>
 
             units</td>
 
         </tr>
 
         </tr>
Line 214: Line 212:
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237014" target="_blank">BBa_K5237014</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237014" target="_blank">BBa_K5237014</a></td>
 
           <td>fgRNA processing casette</td>
 
           <td>fgRNA processing casette</td>
           <td>Processing casette to produce multiple fgRNAs from one transcript, can be used for multiplexing</td>
+
           <td>Processing casette to produce multiple fgRNAs from one transcript, that can be used for multiplexed 3D genome reprograming</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
Line 225: Line 223:
 
       <td colspan="3" align="left"><b>Readout Systems: </b>
 
       <td colspan="3" align="left"><b>Readout Systems: </b>
 
         FRET and enhancer recruitment to measure proximity of stapled DNA in bacterial and mammalian living cells
 
         FRET and enhancer recruitment to measure proximity of stapled DNA in bacterial and mammalian living cells
         enabling swift testing and easy development for new systems.</td>
+
         enabling swift testing and easy development for new systems</td>
 
       <tbody>
 
       <tbody>
 
         <tr bgcolor="#FFD700">
 
         <tr bgcolor="#FFD700">
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237016" target="_blank">BBa_K5237016</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237016" target="_blank">BBa_K5237016</a></td>
 
           <td>FRET-Donor: mNeonGreen-Oct1</td>
 
           <td>FRET-Donor: mNeonGreen-Oct1</td>
           <td>Donor part for the FRET assay binding the Oct1 binding cassette. Can be used to visualize DNA-DNA
+
           <td>FRET Donor-Fluorpohore fused to Oct1-DBD that binds to the Oct1 binding cassette. Can be used to visualize DNA-DNA
 
             proximity</td>
 
             proximity</td>
 
         </tr>
 
         </tr>
Line 242: Line 240:
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237018" target="_blank">BBa_K5237018</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237018" target="_blank">BBa_K5237018</a></td>
 
           <td>Oct1 Binding Casette</td>
 
           <td>Oct1 Binding Casette</td>
           <td>DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the FRET
+
           <td>DNA sequence containing 12 Oct1 binding motifs, compatible with various assays such as the FRET
 
             proximity assay</td>
 
             proximity assay</td>
 
         </tr>
 
         </tr>
Line 253: Line 251:
 
         <td><a href="https://parts.igem.org/Part:BBa_K5237020" target="_blank">BBa_K5237020</a></td>
 
         <td><a href="https://parts.igem.org/Part:BBa_K5237020" target="_blank">BBa_K5237020</a></td>
 
         <td>Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64</td>
 
         <td>Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64</td>
         <td>Readout system that responds to protease activity. It was used to test Cathepsin-B cleavable linker.</td>
+
         <td>Readout system that responds to protease activity. It was used to test cathepsin B-cleavable linker</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237021" target="_blank">BBa_K5237021</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237021" target="_blank">BBa_K5237021</a></td>
 
           <td>NLS-Gal4-VP64</td>
 
           <td>NLS-Gal4-VP64</td>
           <td>Trans-activating enhancer, that can be used to simulate enhancer hijacking. </td>
+
           <td>Trans-activating enhancer, that can be used to simulate enhancer hijacking</td>
 
         </tr>
 
         </tr>
 
         <td><a href="https://parts.igem.org/Part:BBa_K5237022" target="_blank">BBa_K5237022</a></td>
 
         <td><a href="https://parts.igem.org/Part:BBa_K5237022" target="_blank">BBa_K5237022</a></td>
 
         <td>mCherry Expression Cassette: UAS, minimal Promotor, mCherry</td>
 
         <td>mCherry Expression Cassette: UAS, minimal Promotor, mCherry</td>
         <td>Readout system for enhancer binding. It was used to test Cathepsin-B cleavable linker.</td>
+
         <td>Readout system for enhancer binding. It was used to test cathepsin B-cleavable linker</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237023" target="_blank">BBa_K5237023</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237023" target="_blank">BBa_K5237023</a></td>
 
           <td>Oct1 - 5x UAS binding casette</td>
 
           <td>Oct1 - 5x UAS binding casette</td>
           <td>Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay.</td>
+
           <td>Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
Line 273: Line 271:
 
           <td>TRE-minimal promoter- firefly luciferase</td>
 
           <td>TRE-minimal promoter- firefly luciferase</td>
 
           <td>Contains Firefly luciferase controlled by a minimal promoter. It was used as a luminescence readout for
 
           <td>Contains Firefly luciferase controlled by a minimal promoter. It was used as a luminescence readout for
             simulated enhancer hijacking.</td>
+
             simulated enhancer hijacking</td>
 
         </tr>
 
         </tr>
 
       </tbody>
 
       </tbody>

Revision as of 20:49, 30 September 2024


BBa_K5237013

Caged NpuC Intein

The Caged NpuC Intein is derived from the naturally split intein DnaE of the cyanobacterium Nostoc punctiforme, designed to facilitate controlled protein trans-splicing. By caging the N- and C-terminal intein fragments (NpuN and NpuC), splicing is inhibited until removal of the cages, allowing precise regulation of protein linkage. The caged NpuC intein fragment was codon optimized for expression in human cells. The system enables the conditional assembly of proteins, such as the oligomerization of dead Cas9, via cathepsin B-mediated cleavage, providing a versatile tool for synthetic biology applications.

 



The PICasSO Toolbox
Figure 1: How our part collection can be used to engineer new staples


Next to the well-studied linear DNA sequence, the 3D spatial organization of DNA plays a crucial role in gene regulation, cell fate, disease development and more. However, the tools to precisely manipulate this genomic architecture remain limited, rendering it challenging to explore the full potential of the 3D genome in synthetic biology. We - iGEM Team Heidelberg 2024 - have developed PICasSO, a powerful molecular toolbox based on various DNA-binding proteins to address this issue.

The PICasSO part collection offers a comprehensive, modular platform for precise manipulation and re-programming of DNA-DNA interactions using protein staples in living cells, enabling researchers to recreate natural 3D genomic interactions, such as enhancer hijacking, or to design entirely new spatial architectures for gene regulation. Beyond its versatility, PICasSO includes robust assay systems to support the engineering, optimization, and testing of new staples, ensuring functionality in vitro and in vivo. We took special care to include parts crucial for testing every step of the cycle (design, build, test, learn) when engineering new parts.

At its heart, the PICasSO part collection consists of three categories.
(i) Our DNA-binding proteins include our finalized enhancer hijacking Cas staple as well as half staples that can be used by scientists to compose entirely new Cas staples in the future. We also include our Simple staples that serve as controls for successful stapling and can be further engineered to create alternative, simpler and more compact staples.
(ii) As functional elements, we list additional parts that enhance the functionality of our Cas and Basic staples. These consist of protease-cleavable peptide linkers and inteins that allow condition-specific, dynamic stapling in vivo. Besides staple functionality, we also include the parts to enable the efficient delivery of PICasSO's constructs with our interkingdom conjugation system.
(iii) As the final category of our collection, we provide parts that support the use of our custom readout systems. These include components of our established FRET-based proximity assay system, enabling users to confirm accurate stapling. Additionally, we offer a complementary, application-oriented testing system for functional readouts via a luciferase reporter, which allows for straightforward experimental simulation of enhancer hijacking in mammalian cells.

The following table gives a comprehensive overview of all parts in our PICasSO toolbox. The highlighted parts showed exceptional performance as described on our iGEM wiki and can serve as a reference. The other parts in the collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their own custom Cas staples, enabling further optimization and innovation.

Our part collection includes:

DNA-binding proteins: The building blocks for engineering of custom staples for DNA-DNA interactions with a modular system ensuring easy assembly.
BBa_K5237000 fgRNA Entry vector MbCas12a-SpCas9 Entryvector for simple fgRNA cloning via SapI
BBa_K5237001 Staple subunit: dMbCas12a-Nucleoplasmin NLS Staple subunit that can be combined with sgRNA or fgRNA and dCas9 to form a functional staple
BBa_K5237002 Staple subunit: SV40 NLS-dSpCas9-SV40 NLS Staple subunit that can be combined witha sgRNA or fgRNA and dCas12avto form a functional staple
BBa_K5237003 Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS Functional Cas staple that can be combined with sgRNA or fgRNA to bring two DNA strands into close proximity
BBa_K5237004 Staple subunit: Oct1-DBD Staple subunit that can be combined to form a functional staple, for example with TetR.
Can also be combined with a fluorescent protein as part of the FRET proximity assay
BBa_K5237005 Staple subunit: TetR Staple subunit that can be combined to form a functional staple, for example with Oct1.
Can also be combined with a fluorescent protein as part of the FRET proximity assay
BBa_K5237006 Simple staple: TetR-Oct1 Functional staple that can be used to bring two DNA strands in close proximity
BBa_K5237007 Staple subunit: GCN4 Staple subunit that can be combined to form a functional staple, for example with rGCN4
BBa_K5237008 Staple subunit: rGCN4 Staple subunit that can be combined to form a functional staple, for example with rGCN4
BBa_K5237009 Mini staple: bGCN4 Assembled staple with minimal size that can be further engineered
Functional elements: Protease-cleavable peptide linkers and inteins are used to control and modify staples for further optimization for custom applications
BBa_K5237010 Cathepsin B-cleavable Linker: GFLG Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make responsive staples
BBa_K5237011 Cathepsin B Expression Cassette Expression Cassette for the overexpression of cathepsin B
BBa_K5237012 Caged NpuN Intein A caged NpuN split intein fragment that undergoes protein trans-splicing after protease activation. Can be used to create functionalized staples units
BBa_K5237013 Caged NpuC Intein A caged NpuC split intein fragment that undergoes protein trans-splicing after protease activation. Can be used to create functionalized staples units
BBa_K5237014 fgRNA processing casette Processing casette to produce multiple fgRNAs from one transcript, that can be used for multiplexed 3D genome reprograming
BBa_K5237015 Intimin anti-EGFR Nanobody Interkindom conjugation between bacteria and mammalian cells, as alternative delivery tool for large constructs
Readout Systems: FRET and enhancer recruitment to measure proximity of stapled DNA in bacterial and mammalian living cells enabling swift testing and easy development for new systems
BBa_K5237016 FRET-Donor: mNeonGreen-Oct1 FRET Donor-Fluorpohore fused to Oct1-DBD that binds to the Oct1 binding cassette. Can be used to visualize DNA-DNA proximity
BBa_K5237017 FRET-Acceptor: TetR-mScarlet-I Acceptor part for the FRET assay binding the TetR binding cassette. Can be used to visualize DNA-DNA proximity
BBa_K5237018 Oct1 Binding Casette DNA sequence containing 12 Oct1 binding motifs, compatible with various assays such as the FRET proximity assay
BBa_K5237019 TetR Binding Cassette DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the FRET proximity assay
BBa_K5237020 Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64 Readout system that responds to protease activity. It was used to test cathepsin B-cleavable linker
BBa_K5237021 NLS-Gal4-VP64 Trans-activating enhancer, that can be used to simulate enhancer hijacking
BBa_K5237022 mCherry Expression Cassette: UAS, minimal Promotor, mCherry Readout system for enhancer binding. It was used to test cathepsin B-cleavable linker
BBa_K5237023 Oct1 - 5x UAS binding casette Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay
BBa_K5237024 TRE-minimal promoter- firefly luciferase Contains Firefly luciferase controlled by a minimal promoter. It was used as a luminescence readout for simulated enhancer hijacking

1. Sequence Overview

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]

2. Usage and Biology

Inteins are protein sequences that splice themselves out of a polypeptide chain through an autocatalytic cleavage reaction. This process ligates the flanking polypeptides, termed exteins (Mills, Johnson & Perler, 2014; Wang et al., 2022). Some inteins are naturally split in two parts – termed N- and C-terminal intein fragments. Trans-splicing of two split intein fragments can covalently link two different proteins (Ventura & Mootz, 2019).
The naturally split intein DnaE from the cyanobacterium Nostoc punctiforme (Npu) was previously utilized to link different protein fragments in prokaryotic and eukaryotic systems (Gramespacher et al., 2017). DnaE consists of the NpuN and NpuC intein fragments. Caging of NpuN and NpuC with truncated fragments of the opposite intein fragment inhibits protein trans-splicing. This allows for the controlled induction of protein trans-splicing upon removal of the intein cages (Gramespacher et al., 2017). Here, we utilized NpuN and NpuC to induce linkage of dead Cas9 (dCas9) proteins upon removal of intein cages by cathepsin B cleavage.

3. Assembly and Part Evolution

The sequence for NpuC was taken from Gramespacher et al. (2017) and optimized for expression in human cells (Codon Optimization Tool from Integrated DNA Technologies, Inc.).
The protein sequence of NpuN51-102 was taken from Gramespacher et al. (2017). The nucleotide sequence was codon optimized for expression in human cells (Codon Optimization Tool from Integrated DNA Technologies, Inc.).

4. References

Gramespacher, J. A., Stevens, A. J., Nguyen, D. P., Chin, J. W., & Muir, T. W. (2017). Intein Zymogens: Conditional Assembly and Splicing of Split Inteins via Targeted Proteolysis. J Am Chem Soc, 139(24), 8074-8077. https://doi.org/10.1021/jacs.7b02618

Mills, K. V., Johnson, M. A., & Perler, F. B. (2014). Protein Splicing: How Inteins Escape from Precursor Proteins. Journal of Biological Chemistry, 289(21), 14498-14505. https://doi.org/10.1074/jbc.R113.540310

Ventura, B. D., & Mootz, H. D. (2019). Switchable inteins for conditional protein splicing. Biological Chemistry, 400(4), 467-475. https://doi.org/doi:10.1515/hsz-2018-0309

Wang, H., Wang, L., Zhong, B., & Dai, Z. (2022). Protein Splicing of Inteins: A Powerful Tool in Synthetic Biology [Mini Review]. Frontiers in Bioengineering and Biotechnology, 10. https://doi.org/10.3389/fbioe.2022.810180