Difference between revisions of "Part:BBa K5184054"
Line 3: | Line 3: | ||
<partinfo>BBa_K5184054 short</partinfo> | <partinfo>BBa_K5184054 short</partinfo> | ||
− | To equip our insecticide with enhanced prevention efficacy against | + | To equip our insecticide with enhanced prevention efficacy against spider mites, we also decide to synthesize 9-hydroxy-zingiberene (9HZ) and 9-hydroxy-10,11-epoxy zingiberene (9H10epoZ), two oxidized products of the monocyclic sesquiterpene 7epiZ. However, the zingiberene oxidase ShZPO was originally found in eukaryotic organisms. They were originally immobalized on the ER membrane. However, since E. coli does not have this structure, the 25 amino acid N-terminus ER transit peptide of the oxidase is truncated to enhance solubility and expression rate. Also, a SpyCathcer is added, which will form an isopeptide bond with the SpyTag, thus imitating the colocalization of the two enzymes in eukaryotes. Our usage of sc-t25ShZPO provide future iGEM teams with a novel method to synthesize an enzyme originally found in eukaryotes through a prokaryotic chassis. |
==Essential Information== | ==Essential Information== | ||
Line 17: | Line 17: | ||
===Characterization=== | ===Characterization=== | ||
− | After successfully producing 7epiZ, we aim to produce 9HZ and 9H10epoZ, two terpenes that are even more efficient than 7epiZ. [figure 1A].[1] To enable our product to achieve enhanced repellent effects, we explored further on the basis of | + | After successfully producing 7epiZ, we aim to produce 9HZ and 9H10epoZ, two terpenes that are even more efficient than 7epiZ. [figure 1A].[1] To enable our product to achieve enhanced repellent effects, we explored further on the basis of 7epiZ production and introduced the oxidase ShZPO and the reductases AtCPR1 and SlCPR2 as its redox partners [figure 4B]. The oxidase and reductase were originally found in eukaryotic organisms, immobilized on the endoplasmic reticulum (ER) in eukaryotic plant cells [figure 1C]. |
<center><html><img src="https://static.igem.wiki/teams/5184/parts/scie84.webp" width="600"/></html></center> | <center><html><img src="https://static.igem.wiki/teams/5184/parts/scie84.webp" width="600"/></html></center> |
Revision as of 07:44, 30 September 2024
sc-t25ShZPO
To equip our insecticide with enhanced prevention efficacy against spider mites, we also decide to synthesize 9-hydroxy-zingiberene (9HZ) and 9-hydroxy-10,11-epoxy zingiberene (9H10epoZ), two oxidized products of the monocyclic sesquiterpene 7epiZ. However, the zingiberene oxidase ShZPO was originally found in eukaryotic organisms. They were originally immobalized on the ER membrane. However, since E. coli does not have this structure, the 25 amino acid N-terminus ER transit peptide of the oxidase is truncated to enhance solubility and expression rate. Also, a SpyCathcer is added, which will form an isopeptide bond with the SpyTag, thus imitating the colocalization of the two enzymes in eukaryotes. Our usage of sc-t25ShZPO provide future iGEM teams with a novel method to synthesize an enzyme originally found in eukaryotes through a prokaryotic chassis.
Essential Information
Sequences
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Usage and Biology
t25ShZPO is the truncated version of the plant P450 monooxidase, ShZPO, which is responsible for the two sequential oxidations of 7epiZ to produce 9H10,11epoZ via first a hydroxylation at C9 and then a epoxidation and C10 and C11. Like other enzymes of the P450 superfamily, t25ShZPO has a heme group as cofactor to facilitate necessary electron transfers associated with oxidation of its substrate. The oxidase also requires cooperation with a P450 reductase, in context of our part collection SlCPR1 or AtCPR2, to supply the electrons required for its catalytic activities. The 25aa N-terminus ER transit peptide of the oxidase is truncated to enhance solubility and expression rate of the enzyme in E. coli. The SpyTag-SpyCather system was originally found in Streptococcus pyogenes, with its fibronectin-binding protein FbaB containing a domain with a spontaneous isopeptide bond between Lys and Asp. By splitting this domain and rational engineering of the fragments, a peptide (SpyTag) which formed an amide bond to its protein partner (SpyCatcher) in minutes is obtained.
Characterization
After successfully producing 7epiZ, we aim to produce 9HZ and 9H10epoZ, two terpenes that are even more efficient than 7epiZ. [figure 1A].[1] To enable our product to achieve enhanced repellent effects, we explored further on the basis of 7epiZ production and introduced the oxidase ShZPO and the reductases AtCPR1 and SlCPR2 as its redox partners [figure 4B]. The oxidase and reductase were originally found in eukaryotic organisms, immobilized on the endoplasmic reticulum (ER) in eukaryotic plant cells [figure 1C].
We aim to synthesize 9HZ and 9H10epoZ in E.coli, a prokaryotic organism without an ER. Thus, we optimize the oxidase and reductases for production in E.coli through cutting the N-terminal anchor regions of the three enzymes. Specifically, 25 amino acids at the N-terminal of ShZPO, 76 of SlCPR2 and 55 of AtCPR1 were cut according to the tag analysis results [figure 2].
We employed GoldenGate Assembly to construct the plasmids pW1-ZIS-NPPS-Mvan4662-t25ShZPO-t76SlCPR2 and pW1-ZIS-NPPS-Mvan4662-t25ShZPO-t55AtCPR1. The colony PCR results reveal successful plasmid construction. The sequencing result confirms that the fragments are successfully linked with no mutations. [figure 3A&B]
Fermentation of pW1-ZIS-NPPS-Mvan4662-t25ShZPO-t76SlCPR2 and pW1-ZIS-NPPS-Mvan4662-t25ShZPO-t55AtCPR1 in DH5α was induced by IPTG and lasted 24 hours using dodecane as solvent. After the products were collected and underwent GC-MS analysis, we discovered that 9HZ and 9H10epoZ were not detected. Instead, only 7epiZ was produced. [figure 8A&B]
References
[1]: Dawood, Mohammad H., and John C. Snyder. ‘The Alcohol and Epoxy Alcohol of Zingiberene, Produced in Trichomes of Wild Tomato, Are More Repellent to Spider Mites Than Zingiberene’. Frontiers in Plant Science, vol. 11, Feb. 2020, p. 35. DOI.org (Crossref), https://doi.org/10.3389/fpls.2020.00035.