Difference between revisions of "Part:BBa K5246023"
Line 22: | Line 22: | ||
DeepTMHMM's protein topology predictions showed that HfsK is most likely a globular protein located on the cytoplasmic side of the membrane. | DeepTMHMM's protein topology predictions showed that HfsK is most likely a globular protein located on the cytoplasmic side of the membrane. | ||
− | High confidence scores of | + | High confidence scores of AlphaFold 3 structures suggest that HfsK is likely a globular protein. A pTM score above 0.5 suggests that the predicted overall structure may closely resemble the true protein fold, while ipTM indicates the accuracy of the subunit positioning within the complex. Values higher than 0.8 represent confident, high-quality predictions. |
To summarise, HfsK is most likely a globular N-acetyltransferase. Earlier evidence, combined with our findings, suggests that it plays a role in the deacetylation of N-acetylglucosamine within the holdfast synthesis pathway. [1][2][3] | To summarise, HfsK is most likely a globular N-acetyltransferase. Earlier evidence, combined with our findings, suggests that it plays a role in the deacetylation of N-acetylglucosamine within the holdfast synthesis pathway. [1][2][3] |
Revision as of 12:02, 28 September 2024
HB HfsK Acetyltransferase
Introduction
Usage and Biology
This HfsK gene from Hirschia baltica codes a 371 amino acid protein. This protein is a GNAT family N-acetyltransferase that catalyzes the transfer of an acetyl group from acetyl-CoA to a substrate. Research investigating the H. baltica genome found that hfsK and its paralogs are found outside the hfs locus. Color coding corresponds to homologs and paralogs. Hash marks indicate genes found in a different location in the genome. [1] It is predicted that this is an intracellular protein.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 988
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal AgeI site found at 1038
- 1000COMPATIBLE WITH RFC[1000]
Experimental characterization
Bioinformatic analysis
Using CDD analysis, it was identified that HfsK is similar to the GNAT N-acetyltransferase family. Its domains suggest HfsK is part of the Bcls superfamily. Acetyltransferases of this superfamily are usually involved in cellulose biosynthesis. Protein BLAST did not give conclusive results, which could result from a unique HfsK protein amino acid sequence and structure.
DeepTMHMM's protein topology predictions showed that HfsK is most likely a globular protein located on the cytoplasmic side of the membrane.
High confidence scores of AlphaFold 3 structures suggest that HfsK is likely a globular protein. A pTM score above 0.5 suggests that the predicted overall structure may closely resemble the true protein fold, while ipTM indicates the accuracy of the subunit positioning within the complex. Values higher than 0.8 represent confident, high-quality predictions.
To summarise, HfsK is most likely a globular N-acetyltransferase. Earlier evidence, combined with our findings, suggests that it plays a role in the deacetylation of N-acetylglucosamine within the holdfast synthesis pathway. [1][2][3]
References
1. Chepkwony, N.K. and Brun, Y.V. (2021) ‘A polysaccharide deacetylase enhances bacterial adhesion in high-ionic-strength environments’, iScience, 24(9), p. 103071. doi:10.1016/j.isci.2021.103071.
2. Sprecher, K.S. et al. (2017) ‘Cohesive properties of the Caulobacter crescentus holdfast adhesin are regulated by a novel C-di-GMP effector protein’, mBio, 8(2). doi:10.1128/mbio.00294-17.
3. Hershey, D.M., Fiebig, A. and Crosson, S. (2019) ‘A genome-wide analysis of adhesion in Caulobacter crescentus identifies new regulatory and biosynthetic components for holdfast assembly’, mBio, 10(1). doi:10.1128/mbio.02273-18.