Difference between revisions of "Part:BBa K5317010"
Annaseidler (Talk | contribs) (→Characterization) |
Annaseidler (Talk | contribs) |
||
Line 85: | Line 85: | ||
=Characterization= | =Characterization= | ||
+ | |||
+ | Transfection experiments in mammalian HEK293T cells assessed the promoter functionality and sensitivity. First, the composite part carrying plasmid was introduced via transfection to establish a baseline of endogenous promoter activity before performing co-transfection experiments with the CMV-MTF-1-mRuby2 carrying plasmid (composite part <span class="plainlinks">[https://parts.igem.org/Part:BBa_K5317012 K5317012]</span>) under varying copper concentration for stimulation. The EGFP fluorescence signal was analyzed for localization by microscopy and intensity by FACS analysis. | ||
+ | |||
+ | ===Single-transfection experiments=== | ||
<html> | <html> | ||
Line 95: | Line 99: | ||
Figure 2: Transfection of HEK293T cells with the 4xMREd-EGFP-C2 plasmid showed no base signal of the promoter without metal ion stimulation. Scale bar = 20 µm. | Figure 2: Transfection of HEK293T cells with the 4xMREd-EGFP-C2 plasmid showed no base signal of the promoter without metal ion stimulation. Scale bar = 20 µm. | ||
+ | |||
+ | |||
+ | The single transfection with the 4xMREd-EGFP-C2 plasmid in HEK293T cells showed no base signal without the co-transfection with the CMV-MTF1-mRuby2 plasmid and no metal ion stimulation. The experiments allow conclusions about sensitivity and specificity of the promoter under homeostatic conditions. In conclusion, the generated promoter has no unspecific expression by for example other, under homeostatic conditions active, transcription factors. The possible endogenous expression of MTF-1 is also not enough to generate a fluorescent signal under unstimulated conditons. | ||
+ | |||
+ | ===Co-transfection experiments with MTF-1=== | ||
+ | |||
=Reference= | =Reference= |
Revision as of 08:06, 29 September 2024
4xMREd-EGFP
Usage and Biology
The MRE-sites containing promoter enables the metal-dependent expression of the downstream positioned reporter gene EGFP via the metal ion-dependent transcription factor MTF-1 for cell-based metal detection.
In order to develop a cell-based heavy metal sensor, our research group generated a series of synthetic MTF-1-responsive promoter constructs and evaluated their efficacy. Since Wang and colleagues (2004) suggested a high affinity of MTF-1 towards MREd we synthesized a promoter sequence containing four MREd elements at the positioning of the MREs of the MREwt promoter (K5317003) to exclude possible disruption of the MTF-1 and MRE interaction.
Cloning
Theoretical Part Design
Placing the 4xMREd-containing promoter upstream of the reporter gene EGFP allows the visualization of primarily metal-dependent activation of MTF-1.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Cloning
The cassette composed of 4xMREd-EGFP was assembled by amplifying the 4xMREd (K5317005) promoter using the primers in table 1 and assembling the promoter in the AseI- and NheI-digested EGFP-C2 backbone (K3338020) using the NEB Hifi Assembly Kit.
Primer name | Sequence |
---|---|
4xMREd_fw | CCGCCATGCATTAGTTATGCACACTGGCGCT |
4xMREd_rev | TGGCGACCGGTAGCGGACGCTTAGAGGACAGC |
The vector map of the assembled construct is shown in figure 1.
Figure 1: Vector map of the assembled plasmid 4xMREd-EGFP-C2 integrating the 4xMREd promoter upstream of the reporter gene EGFP in the pEGFP-C2 backbone.
Characterization
Transfection experiments in mammalian HEK293T cells assessed the promoter functionality and sensitivity. First, the composite part carrying plasmid was introduced via transfection to establish a baseline of endogenous promoter activity before performing co-transfection experiments with the CMV-MTF-1-mRuby2 carrying plasmid (composite part K5317012) under varying copper concentration for stimulation. The EGFP fluorescence signal was analyzed for localization by microscopy and intensity by FACS analysis.
Single-transfection experiments
Figure 2: Transfection of HEK293T cells with the 4xMREd-EGFP-C2 plasmid showed no base signal of the promoter without metal ion stimulation. Scale bar = 20 µm.
The single transfection with the 4xMREd-EGFP-C2 plasmid in HEK293T cells showed no base signal without the co-transfection with the CMV-MTF1-mRuby2 plasmid and no metal ion stimulation. The experiments allow conclusions about sensitivity and specificity of the promoter under homeostatic conditions. In conclusion, the generated promoter has no unspecific expression by for example other, under homeostatic conditions active, transcription factors. The possible endogenous expression of MTF-1 is also not enough to generate a fluorescent signal under unstimulated conditons.
Co-transfection experiments with MTF-1
Reference
Wang, Y., Lorenzi, I., Georgiev, O., & Schaffner, W. (2004). Metal-responsive transcription factor-1 (MTF-1) selects different types of metal response elements at low vs. high zinc concentration. Biological chemistry, 385(7), 623–632. https://doi.org/10.1515/BC.2004.077