Difference between revisions of "Part:BBa K5036047"

Line 38: Line 38:
 
lang=EN style='padding-bottom:30px;font-size:11.0pt;line-height:115%'>Graph(1). Illustrates the relation between decreasing free MMP-9 (Blue line) upon their binding to nanobody-1 NSP3 (orange line) and nanobody-3 MCP (Red line) at the same time, which results in forming a binding complex ( Green line)
 
lang=EN style='padding-bottom:30px;font-size:11.0pt;line-height:115%'>Graph(1). Illustrates the relation between decreasing free MMP-9 (Blue line) upon their binding to nanobody-1 NSP3 (orange line) and nanobody-3 MCP (Red line) at the same time, which results in forming a binding complex ( Green line)
 
.  </span></p></div></html>
 
.  </span></p></div></html>
 +
==Experimental Characterization==
 +
In this case shows treatment potential of TID-based protein sensors in vivo, tumor xenografts were created by stably expressing EGFP-NS3a (H1) in epithelial B16-F10 cells, exemplifying a malignant cell signature featuring the presence of a specific target protein in the cytosol. Mice received daily intratumoral injections of plasmid mixtures encoding for an MCP-LaG16/ (ANR) 8-NSP3-based EGFP-NS3a (H1) sensor driving translation and in situ production of a pro-apoptotic Bax protein. The experiment showed no significant activation of apoptosis and rapid tumor growth was observed in mice implanted with native B16-F10 cells not expressing EGFP-NS3a (H1) and activation of apoptosis in mice treated with the genetic sensor indicating negligible background Bax expression under a potentially “normal” cell signature. Importantly, effective protein levels of Bax detected in tumors correlated with the cell lysis profile.
 +
<html><div align="center"style="border:solid #17252A; width:100%;float:center;"><img style="                              max-width:850px;
 +
width:75%;
 +
height:auto;
 +
position: relative;
 +
top: 50%;
 +
left: 35%;
 +
transform: translate( -50%);
 +
padding-bottom:25px;
 +
padding-top:25px;
 +
"src="https://static.igem.wiki/teams/5036/parts-experiment/switch-1.png">
 +
<p class=MsoNormal align=center style='text-align:left;border:none;width:98% ;justify-content:center;'><span
 +
lang=EN style='font-size:11.0pt;line-height:115%'>The gene circuit is created to trigger apoptosis specifically in cells that produce the EGFP-NS3a (H1) protein. It is made up of three parts:
 +
 +
  1-(H1) protein which detected by a sensor
 +
 +
 +
2-Bax is effector EGFP-NS3a gene which induce Apoptosis
 +
 +
 +
3-Translation element which present in malignant cells and induce Apoptosis
 +
.  </span></p></div></html>
 +
 +
 +
In the First Experiment: EGFP-NS3a (H1)-specific Activation of Apoptosis
 +
<html><div align="center"style="border:solid #17252A; width:100%;float:center;"><img style="                              max-width:850px;
 +
width:75%;
 +
height:auto;
 +
position: relative;
 +
top: 50%;
 +
left: 35%;
 +
transform: translate( -50%);
 +
padding-bottom:25px;
 +
padding-top:25px;
 +
"src="https://static.igem.wiki/teams/5036/parts-experiment/switch-2.png">
 +
<p class=MsoNormal align=center style='text-align:left;border:none;width:98% ;justify-content:center;'><span
 +
lang=EN style='font-size:11.0pt;line-height:115%'>As (b, c) Daily changes of tumor size were assessed by calculating volume. show that the tumor size increased in the control group and slightly maintained or not increased in the treated group due to apoptosis due expression  of Bax protein.
 +
 +
 +
(d)  Mice harboring subcutaneous B16-F10 EGFP-NS3a (H1)-derived tumors received local injections of pcDNA3.1 (+) (negative control, n = 5 mice per group) showed no translation of Bax protein so no apoptosis occurs and no decrease in tumor size on the other hand group injected with plasmid DNA mixture comprising pSL831 (PhCMV-mBax-(MS2-box) 24-HHR-pA), pSL776 (PhCMV-MCP-LaG16-pA) and pSL582 (PhCMV-(ANR) 8-NSP3-pA)  (treatment group, n = 5 mice per group) showed translation of Bax protein so apoptosis occurs and decrease in tumor size
 +
.  </span></p></div></html>
 +
 +
 +
In the second experiment: No Activation of Apoptosis in EGFP-NS3a (H1)-deficient Tissues
 +
<html><div align="center"style="border:solid #17252A; width:100%;float:center;"><img style="                              max-width:850px;
 +
width:75%;
 +
height:auto;
 +
position: relative;
 +
top: 50%;
 +
left: 35%;
 +
transform: translate( -50%);
 +
padding-bottom:25px;
 +
padding-top:25px;
 +
"src="https://static.igem.wiki/teams/5036/parts-experiment/switch-3.png">
 +
<p class=MsoNormal align=center style='text-align:left;border:none;width:98% ;justify-content:center;'><span
 +
lang=EN style='font-size:11.0pt;line-height:115%'>(E, f) showed that both group Control and treatment group have the same tumor volume, which indicated that no apoptosis and due to absences of Bax protein.
 +
 +
 +
(g) Western Blot showed No activation of apoptosis by a PhCMV-driven EGFP-NS3a (H1) sensor in EGFP-NS3a (H1)-deficient tissues. Mice harboring subcutaneous B16-F10-derived tumors received local injections of pcDNA3.1 (+) (negative control, n = 5 mice per group) or plasmid DNA mixture comprising pSL831/pSL776/pSL582 (treatment group, n = 5 mice per group). So in the absences of translation element EGFP-NS3a (H1) protein in both groups the sensor didn’t activate so no translation of Bax which is the effector gene so no apoptosis occurs in both
 +
.  </span></p></div></html>
 +
 
==Reference==
 
==Reference==
 
Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, Fry TJ, Orentas R, Sabatino M, Shah NN, Steinberg SM. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. The Lancet. 2015 Feb 7;385(9967):517-28.
 
Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, Fry TJ, Orentas R, Sabatino M, Shah NN, Steinberg SM. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. The Lancet. 2015 Feb 7;385(9967):517-28.

Revision as of 10:40, 28 September 2024


MCP-MMP9 Nanobody3

Part Description

Our engineered switch contains a nanobody that recognizes MMP9, an enzyme elevated in injured cells. This nanobody is linked to MCP protein, which is attached to MS2 from the other end because of its high affinity for MS2.

Usage

Our TID device contains MCP protein linked to specific sensors (nanobodies) that detect MMP9, a protein elevated within cells after tissue injury. TID switches from off state to on state when MMP9 is present in the cell cytoplasm. This triggers the circularization of YAP mRNA, which is essential for protein production

this figure illustrates the structure of MCP-MMP9 Nanobody which is attached to our switch .

Characterization by Mathematical Modeling

The model provides the interaction kinetics of MMP-9 to both Nanobody-1 NSP3 from the cap side and Nanobody-3 MCP from MS2 aptamer side to form a binding complex to activate our TID switch. The result shows an increase in the binding complex upon MMP-9 interaction based on parametric values from literature.

Graph(1). Illustrates the relation between decreasing free MMP-9 (Blue line) upon their binding to nanobody-1 NSP3 (orange line) and nanobody-3 MCP (Red line) at the same time, which results in forming a binding complex ( Green line) .

Experimental Characterization

In this case shows treatment potential of TID-based protein sensors in vivo, tumor xenografts were created by stably expressing EGFP-NS3a (H1) in epithelial B16-F10 cells, exemplifying a malignant cell signature featuring the presence of a specific target protein in the cytosol. Mice received daily intratumoral injections of plasmid mixtures encoding for an MCP-LaG16/ (ANR) 8-NSP3-based EGFP-NS3a (H1) sensor driving translation and in situ production of a pro-apoptotic Bax protein. The experiment showed no significant activation of apoptosis and rapid tumor growth was observed in mice implanted with native B16-F10 cells not expressing EGFP-NS3a (H1) and activation of apoptosis in mice treated with the genetic sensor indicating negligible background Bax expression under a potentially “normal” cell signature. Importantly, effective protein levels of Bax detected in tumors correlated with the cell lysis profile.

The gene circuit is created to trigger apoptosis specifically in cells that produce the EGFP-NS3a (H1) protein. It is made up of three parts: 1-(H1) protein which detected by a sensor 2-Bax is effector EGFP-NS3a gene which induce Apoptosis 3-Translation element which present in malignant cells and induce Apoptosis .


In the First Experiment: EGFP-NS3a (H1)-specific Activation of Apoptosis

As (b, c) Daily changes of tumor size were assessed by calculating volume. show that the tumor size increased in the control group and slightly maintained or not increased in the treated group due to apoptosis due expression of Bax protein. (d) Mice harboring subcutaneous B16-F10 EGFP-NS3a (H1)-derived tumors received local injections of pcDNA3.1 (+) (negative control, n = 5 mice per group) showed no translation of Bax protein so no apoptosis occurs and no decrease in tumor size on the other hand group injected with plasmid DNA mixture comprising pSL831 (PhCMV-mBax-(MS2-box) 24-HHR-pA), pSL776 (PhCMV-MCP-LaG16-pA) and pSL582 (PhCMV-(ANR) 8-NSP3-pA) (treatment group, n = 5 mice per group) showed translation of Bax protein so apoptosis occurs and decrease in tumor size .


In the second experiment: No Activation of Apoptosis in EGFP-NS3a (H1)-deficient Tissues

(E, f) showed that both group Control and treatment group have the same tumor volume, which indicated that no apoptosis and due to absences of Bax protein. (g) Western Blot showed No activation of apoptosis by a PhCMV-driven EGFP-NS3a (H1) sensor in EGFP-NS3a (H1)-deficient tissues. Mice harboring subcutaneous B16-F10-derived tumors received local injections of pcDNA3.1 (+) (negative control, n = 5 mice per group) or plasmid DNA mixture comprising pSL831/pSL776/pSL582 (treatment group, n = 5 mice per group). So in the absences of translation element EGFP-NS3a (H1) protein in both groups the sensor didn’t activate so no translation of Bax which is the effector gene so no apoptosis occurs in both .

Reference

Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, Fry TJ, Orentas R, Sabatino M, Shah NN, Steinberg SM. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. The Lancet. 2015 Feb 7;385(9967):517-28.

Shin YJ, Park SK, Jung YJ, Kim YN, Kim KS, Park OK, Kwon SH, Jeon SH, Trinh le A, Fraser SE, Kee Y, Hwang BJ. Nanobody-targeted E3-ubiquitin ligase complex degrades nuclear proteins. Sci Rep. 2015 Sep 16;5:14269. doi: 10.1038/srep14269. PMID: 26373678; PMCID: PMC4571616.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]