Difference between revisions of "Part:BBa K5108009"
Line 9: | Line 9: | ||
<partinfo>BBa_K5108009 SequenceAndFeatures</partinfo> | <partinfo>BBa_K5108009 SequenceAndFeatures</partinfo> | ||
+ | <html> | ||
+ | <h2>Usage and Biology</h2> | ||
+ | |||
+ | <p>Creatinine is a urinary human waste, rich in carbon and nitrogen. During recent years countless research has been done on the topic of waste-upcycling and revalorization. Creatinine is one of the few human waste products still to be valorized during space missions. In our project, we wanted to use it as carbon and nitrogen source to support the growth of Pseudomonas fluorecens, which serves as biostimulant for plant. Certain species of Pseudomonas, such as Pseudomonas putida can degrade creatinine and use it as carbon and nitrogen sources to ensure its growth. There is no bibliography on this pathway being present in P.fluorescens. The two enzymes permitting creatinine metabolization are creatinine amidohydrolase (CrnA, EC 3.5.2.10) and creatinase (CreA, EC 3.5.3.3), both expressed in the same operon. The first catalyzes the hydrolysis of creatinine into creatine. Then, the creatinase catalyzes the hydrolysis of creatine into sarcosine and urea. Finally, in P. putida, sarcosine is degraded by a sarcosine oxidase to join the glycine metabolism (Figure 1).</p> | ||
+ | |||
+ | |||
+ | </html> | ||
<!-- Uncomment this to enable Functional Parameter display | <!-- Uncomment this to enable Functional Parameter display |
Revision as of 14:02, 26 September 2024
creA - crnA operon for creatinine metabolization
P. fluorescens creatinine amidohydrolase and creatinase ORFs with RBS
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 1329
Illegal NgoMIV site found at 1931 - 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI site found at 249
Illegal BsaI site found at 1036
Illegal BsaI site found at 1467
Illegal BsaI.rc site found at 1815
Usage and Biology
Creatinine is a urinary human waste, rich in carbon and nitrogen. During recent years countless research has been done on the topic of waste-upcycling and revalorization. Creatinine is one of the few human waste products still to be valorized during space missions. In our project, we wanted to use it as carbon and nitrogen source to support the growth of Pseudomonas fluorecens, which serves as biostimulant for plant. Certain species of Pseudomonas, such as Pseudomonas putida can degrade creatinine and use it as carbon and nitrogen sources to ensure its growth. There is no bibliography on this pathway being present in P.fluorescens. The two enzymes permitting creatinine metabolization are creatinine amidohydrolase (CrnA, EC 3.5.2.10) and creatinase (CreA, EC 3.5.3.3), both expressed in the same operon. The first catalyzes the hydrolysis of creatinine into creatine. Then, the creatinase catalyzes the hydrolysis of creatine into sarcosine and urea. Finally, in P. putida, sarcosine is degraded by a sarcosine oxidase to join the glycine metabolism (Figure 1).