Difference between revisions of "Part:BBa K5267001"
Line 12: | Line 12: | ||
The figure from Okamoto, H. H., Cecon, E., Nureki, O., Rivara, S., & Jockers, R. (2024) shows the overall structure of MT1, both activated structure and inactivated structure, and the position of the ligand binding pocket of MT1, where allows melatonin binds to it and activate of downstream gene pathways.[2] | The figure from Okamoto, H. H., Cecon, E., Nureki, O., Rivara, S., & Jockers, R. (2024) shows the overall structure of MT1, both activated structure and inactivated structure, and the position of the ligand binding pocket of MT1, where allows melatonin binds to it and activate of downstream gene pathways.[2] | ||
− | + | <html> | |
+ | |||
+ | <figure class="figure"> | ||
+ | <div style="width=100%;height=auto;align-items:center"> | ||
+ | <img src="https://static.igem.wiki/teams/5267/mao-parts/mt1-figure-1.jpg" class="figure-img img-fluid rounded" height="400px"> | ||
+ | |||
+ | </html> | ||
+ | |||
Figure: Overall structures of MT1 (A: inactive state [PDB ID: 6ME2], H: active state [PDB ID: 7DB6]), J: active state [PDB ID: 7VH0]). (B) Top view (left) and side view (right) of MT1 in an inactive state [PDB ID: 6ME2]. (C) Overall TM6 movement during receptor activation of MT1 (inactive state: [PDB ID: 6ME2] and active state: [PDB ID: 7DB6]). (E) Ligand binding site of crystal structures of MT1 (left top: [PDB ID: 6ME2], left bottom: [PDB ID: 6ME3], right top: [PDB ID: 6ME4], right bottom: [PDB ID: 6ME5]). (I) Ligand binding site of cryo‐EM structures of MT1 (left: [PDB ID: 7DB6], middle: [PDB ID: 7VGY], right: [PDB ID: 7VGZ]).[2] | Figure: Overall structures of MT1 (A: inactive state [PDB ID: 6ME2], H: active state [PDB ID: 7DB6]), J: active state [PDB ID: 7VH0]). (B) Top view (left) and side view (right) of MT1 in an inactive state [PDB ID: 6ME2]. (C) Overall TM6 movement during receptor activation of MT1 (inactive state: [PDB ID: 6ME2] and active state: [PDB ID: 7DB6]). (E) Ligand binding site of crystal structures of MT1 (left top: [PDB ID: 6ME2], left bottom: [PDB ID: 6ME3], right top: [PDB ID: 6ME4], right bottom: [PDB ID: 6ME5]). (I) Ligand binding site of cryo‐EM structures of MT1 (left: [PDB ID: 7DB6], middle: [PDB ID: 7VGY], right: [PDB ID: 7VGZ]).[2] |
Revision as of 15:47, 23 September 2024
Mammalian MT1 melatonin receptor, Gi-coupled GPCR.
The mammalian MT1 melatonin receptor is a G protein-coupled receptor (GPCR) primarily coupled to the Gi/o protein family. This receptor plays a crucial role in regulating circadian rhythms and sleep-wake cycles by responding to melatonin, a hormone produced by the pineal gland. The MT1 receptor has a seven-transmembrane domain structure characteristic of GPCRs and is involved in inhibiting adenylate cyclase activity, leading to decreased levels of cAMP. It also participates in other signaling pathways, including the activation of phospholipase C and the regulation of intracellular calcium levels. Structural studies of MT1 reveal unique features such as a "lid-like" structure in the extracellular loop 2 (ECL2) that influences ligand binding and selectivity. This part is essential for projects involving the study of circadian biology, sleep regulation, and the pharmacological targeting of melatonin receptors.
Usage and Biology
This part of gene encodes one of two high affinity forms of a receptor for melatonin, the primary hormone secreted by the pineal gland. This receptor is a G-protein coupled, 7-transmembrane receptor, a rhodopsin-like class A receptor that is responsible for melatonin effects on mammalian circadian rhythm and reproductive alterations affected by day length. The receptor is an integral membrane protein that is resadily detectable and localized to two specific regions of the brain. The hypothalamic suprachiasmatic nucleus appears to be involved in circadian rhythm while the hypophysial pars tuberalis may be responsible for the reproductive effects of melatonin.[1] In the human body, melatonin (N-acetyl-5-methoxytryptamine) is a widespread neurohormone with roles in circadian rhythm regulation, antioxidative protection and several other functions. It binds to the ligand binding pocket of melatonin receptor with high affinity in the human body.[2] The figure from Okamoto, H. H., Cecon, E., Nureki, O., Rivara, S., & Jockers, R. (2024) shows the overall structure of MT1, both activated structure and inactivated structure, and the position of the ligand binding pocket of MT1, where allows melatonin binds to it and activate of downstream gene pathways.[2]