Difference between revisions of "Part:BBa K5396000"

Line 15: Line 15:
 
Recent study [ ] has shown that CBM2 has the ability to bind to certain types of plastics, especially those derived  exhibiting similar structural features of polysaccharides. This binding ability is largely due to the protein's carbohydrate-binding properties, which facilitate interactions with specific functional groups found on plastic surfaces.
 
Recent study [ ] has shown that CBM2 has the ability to bind to certain types of plastics, especially those derived  exhibiting similar structural features of polysaccharides. This binding ability is largely due to the protein's carbohydrate-binding properties, which facilitate interactions with specific functional groups found on plastic surfaces.
 
</p>
 
</p>
<p>
 
 
https://static.igem.wiki/teams/5396/registry/imagem-2024-09-20-141428603.png
 
https://static.igem.wiki/teams/5396/registry/imagem-2024-09-20-141428603.png
 +
<p style="font-size: 11px;"><b>Figure 1.</b> AlphaFold 3 3D simulation of BaCBM2 with miRFP and three Mad10 tags.
 
</p>
 
</p>
 
<!-- -->
 
<!-- -->

Revision as of 17:24, 20 September 2024


BaCBM2_RFP_3xMad10

This CBM2 protein is fused with the red fluorescent protein (RFP), which exhibits an excitation maximum at 558 nm and an emission maximum at 583 nm. This fusion enhances the visualization of CBM2. The protein also has three MAD10 peptides [ ], which serve as a magnetic tag that facilitates the purification of the protein through magnetic separation techniques.

This part was used as template to construct BBa_K5396003.

Usage and Biology

This CBM2, or Carbohydrate-Binding Module 2, is a protein sourced from Bacillus anthracis. It belongs to a broader family of carbohydrate-binding modules that are crucial for the degradation of polysaccharides. These modules are important to break down complex carbohydrates, enabling microorganisms to convert them into usable energy sources.

Recent study [ ] has shown that CBM2 has the ability to bind to certain types of plastics, especially those derived exhibiting similar structural features of polysaccharides. This binding ability is largely due to the protein's carbohydrate-binding properties, which facilitate interactions with specific functional groups found on plastic surfaces.

imagem-2024-09-20-141428603.png

Figure 1. AlphaFold 3 3D simulation of BaCBM2 with miRFP and three Mad10 tags.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 597
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]