Difference between revisions of "Part:BBa K5184001"

 
Line 3: Line 3:
 
<partinfo>BBa_K5184001 short</partinfo>
 
<partinfo>BBa_K5184001 short</partinfo>
  
Mvan4662 codes for farnesyl diphosphate synthase that catalyzes the transfer of an isopentenyl group from isopentenyl pyrophosphate (IPP) to prenyl diphosphates, facilitating the formation of longer-chain isoprenoid diphosphates. Specifically, in the context of our part collection, mvan4662 enables the production of Z,Z-farnesyl diphosphate from neryl pyrophosphate (NPP) and isopentenyl pyrophosphate (IPP) in E. coli.
+
Targeting both the prevention and extermination of T. urticae, we aim to produce 7-epi-zingiberene (7epiZ), a sesquiterpene that is found to have repellent, fecundity-reducing, and fatal effects towards T. urticae. After the synthesis of NPP using SltNPPS, we incorporate Mvan4462 for the production of Z,Z-farnesyl diphosphate (Z,Z-FPP) from neryl pyrophosphate (NPP) and isopentenyl pyrophosphate (IPP) in E. coli. Our incorporation of this enzyme provide future iGEM teams with insight into novel enzyme capable of catalyzing the formation of longer-chain isoprenoid diphosphates.
  
<!-- Add more about the biology of this part here
 
 
===Usage and Biology===
 
===Usage and Biology===
 +
Mvan4662 is a cis-farnesyl diphosphate synthase that catalyzes the transfer of an isopentenyl group from isopentenyl pyrophosphate (IPP) to prenyl diphosphates, facilitating the formation of longer-chain isoprenoid diphosphates. Mvan4662 requires Mg2+ or Mn2+ for activity. The product of this reaction is an intermediate in the synthesis of decaprenyl phosphate, which plays a central role in the biosynthesis of most features of the mycobacterial cell wall, including peptidoglycan, linker unit galactan and arabinan. Neryl diphosphate can also act as substrate.
 +
We constructed a novel sesquiterpene synthesis pathway in E. coli. Using glucose as our raw material, we introduce the MVA pathway, which transforms glucose into dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP). Afterwards, SltNPPS, a neryl diphosphate synthase catalyze the production of NPP from IPP and DMAPP. Mvan4662 is then introduced to catalyze the formation of Z,Z-FPP. In the end, ShZIS transforms Z,Z-FPP into 7epiZ.
  
 
<!-- -->
 
<!-- -->

Revision as of 11:52, 27 September 2024


Mvan4662

Targeting both the prevention and extermination of T. urticae, we aim to produce 7-epi-zingiberene (7epiZ), a sesquiterpene that is found to have repellent, fecundity-reducing, and fatal effects towards T. urticae. After the synthesis of NPP using SltNPPS, we incorporate Mvan4462 for the production of Z,Z-farnesyl diphosphate (Z,Z-FPP) from neryl pyrophosphate (NPP) and isopentenyl pyrophosphate (IPP) in E. coli. Our incorporation of this enzyme provide future iGEM teams with insight into novel enzyme capable of catalyzing the formation of longer-chain isoprenoid diphosphates.

Usage and Biology

Mvan4662 is a cis-farnesyl diphosphate synthase that catalyzes the transfer of an isopentenyl group from isopentenyl pyrophosphate (IPP) to prenyl diphosphates, facilitating the formation of longer-chain isoprenoid diphosphates. Mvan4662 requires Mg2+ or Mn2+ for activity. The product of this reaction is an intermediate in the synthesis of decaprenyl phosphate, which plays a central role in the biosynthesis of most features of the mycobacterial cell wall, including peptidoglycan, linker unit galactan and arabinan. Neryl diphosphate can also act as substrate. We constructed a novel sesquiterpene synthesis pathway in E. coli. Using glucose as our raw material, we introduce the MVA pathway, which transforms glucose into dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP). Afterwards, SltNPPS, a neryl diphosphate synthase catalyze the production of NPP from IPP and DMAPP. Mvan4662 is then introduced to catalyze the formation of Z,Z-FPP. In the end, ShZIS transforms Z,Z-FPP into 7epiZ.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]