Difference between revisions of "Part:BBa K4757999:Design"
(→References) |
(→Source) |
||
Line 13: | Line 13: | ||
===Source=== | ===Source=== | ||
− | + | XylS/Pm was stems from the TOL plasmid in Pseudomonas putida (obtained through the pSEVA438) | |
− | XylS/Pm | + | The sRNA scaffold (SgrS) is natively found in Escherichia coli as part from a sugar transport regulatory network. |
− | + | AlkS/pAlkB is natively found in Pseudomonas putida (sequence ordered through gene synthesis). | |
+ | mKate2 originiated from Entacmaea quadricolor (sequence ordered through gene synthesis). | ||
===References=== | ===References=== |
Revision as of 13:11, 12 October 2023
Synthetic expression cassette regulated by terepthalic acid and alkanes for PET and PE sensing
- 10INCOMPATIBLE WITH RFC[10]Illegal EcoRI site found at 4202
Illegal EcoRI site found at 4298 - 12INCOMPATIBLE WITH RFC[12]Illegal EcoRI site found at 4202
Illegal EcoRI site found at 4298
Illegal NotI site found at 1625 - 21INCOMPATIBLE WITH RFC[21]Illegal EcoRI site found at 4202
Illegal EcoRI site found at 4298
Illegal BglII site found at 212 - 23INCOMPATIBLE WITH RFC[23]Illegal EcoRI site found at 4202
Illegal EcoRI site found at 4298 - 25INCOMPATIBLE WITH RFC[25]Illegal EcoRI site found at 4202
Illegal EcoRI site found at 4298
Illegal NgoMIV site found at 934
Illegal NgoMIV site found at 2716
Illegal NgoMIV site found at 3187 - 1000COMPATIBLE WITH RFC[1000]
Design Notes
Source
XylS/Pm was stems from the TOL plasmid in Pseudomonas putida (obtained through the pSEVA438) The sRNA scaffold (SgrS) is natively found in Escherichia coli as part from a sugar transport regulatory network. AlkS/pAlkB is natively found in Pseudomonas putida (sequence ordered through gene synthesis). mKate2 originiated from Entacmaea quadricolor (sequence ordered through gene synthesis).
References
Bao, T., Qian, Y., Xin, Y., Collins, J. J., & Lu, T. (2023). Engineering microbial division of labor for plastic upcycling. Nature communications, 14(1), 5712. <a href="https://doi.org/10.1038/s41467-023-40777-x">https://doi.org/10.1038/s41467-023-40777-x</a>
Chen, D., Xu, S., Li, S., Tao, S., Li, L., Chen, S., & Wu, L. (2023). Directly Evolved AlkS-Based Biosensor Platform for Monitoring and High-Throughput Screening of Alkane Production. ACS synthetic biology, 12(3), 832-841. <a href="https://doi.org/10.1021/acssynbio.2c00620">https://doi.org/10.1021/acssynbio.2c00620</a>
Gallegos, M. T., Marqués, S., & Ramos, J. L. (1996). Expression of the tol plasmid xylS gene in pseudomonas putida occurs from a alpha 70-dependent promoter or from alpha 70- and Alpha 54-dependent tandem promoters according to the compound used for Growth. Journal of Bacteriology, 178(8), 2356-2361. https://doi.org/10.1128/jb.178.8.2356-2361.1996
Gawin, A., Valla, S., & Brautaset, T. (2017). The XylS/Pm regulator/promoter system and its use in fundamental studies of bacterial gene expression, recombinant protein production and metabolic engineering. Microbial biotechnology, 10(4), 702-718. <a href="https://doi.org/10.1111/1751-7915.12701">https://doi.org/10.1111/1751-7915.12701</a>
<a>Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made.</a> Science advances, 3(7), e1700782. <a href="https://doi.org/10.1126/sciadv.1700782">https://doi.org/10.1126/sciadv.1700782</a>
Gottesman S. (2004). The small RNA regulators of Escherichia coli: roles and mechanisms*. Annual review of microbiology, 58, 303-328.</a> <a href="https://doi.org/10.1146/annurev.micro.58.030603.123841">https://doi.org/10.1146/annurev.micro.58.030603.123841</a>
Kelly, C. L., Harris, A. W. K., Steel, H., Hancock, E. J., Heap, J. T., & Papachristodoulou, A. (2018). Synthetic negative feedback circuits using engineered small RNAs. Nucleic acids research, 46(18), 9875-9889. <a href="https://doi.org/10.1093/nar/gky828">https://doi.org/10.1093/nar/gky828</a>
Li, J., Nina, M. R. H., Zhang, X., & Bai, Y. (2022). Engineering Transcription Factor XylS for Sensing Phthalic Acid and Terephthalic Acid: An Application for Enzyme Evolution. ACS synthetic biology, 11(3), 1106-1113. <a href="https://doi.org/10.1021/acssynbio.1c00275">https://doi.org/10.1021/acssynbio.1c00275</a>
Lu, H., Diaz, D. J., Czarnecki, N. J., Zhu, C., Kim, W., Shroff, R., Acosta, D. J., Alexander, B. R., Cole, H. O., Zhang, Y., Lynd, N. A., Ellington, A. D., & Alper, H. S. (2022). Machine learning-aided engineering of hydrolases for PET depolymerization. Nature, 604(7907), 662-667. <a href="https://doi.org/10.1038/s41586-022-04599-z">https://doi.org/10.1038/s41586-022-04599-z</a>
Modi, S. R., Camacho, D. M., Kohanski, M. A., Walker, G. C., & Collins, J. J. (2011). Functional characterization of bacterial sRNAs using a network biology approach. Proceedings of the National Academy of Sciences of the United States of America, 108(37), 15522-15527. <a href="https://doi.org/10.1073/pnas.1104318108">https://doi.org/10.1073/pnas.1104318108</a>
Møller, T., Franch, T., Højrup, P., Keene, D. R., Bächinger, H. P., Brennan, R. G., & Valentin-Hansen, P. (2002). Hfq: a bacterial Sm-like protein that mediates RNA-RNA interaction. Molecular cell, 9(1), 23-30. <a href="https://doi.org/10.1016/s1097-2765(01)00436-1">https://doi.org/10.1016/s1097-2765(01)00436-1</a>
Na, D., Yoo, S. M., Chung, H., Park, H., Park, J. H., & Lee, S. Y. (2013). Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nature biotechnology, 31(2), 170-174. <a href="https://doi.org/10.1038/nbt.2461">https://doi.org/10.1038/nbt.2461</a>
Sharma, S.R. (2018). Bioremediation of Polythenes and Plastics: A Microbial Approach. In: Prasad, R., Aranda, E. (eds) Approaches in Bioremediation. Nanotechnology in the Life Sciences. Springer, Cham. <a href="https://doi.org/10.1007/978-3-030-02369-0_6">https://doi.org/10.1007/978-3-030-02369-0_6</a>
Storz, G., Vogel, J., & Wassarman, K. M. (2011). Regulation by small RNAs in bacteria: expanding frontiers. Molecular cell, 43(6), 880-891. <a href="https://doi.org/10.1016/j.molcel.2011.08.022">https://doi.org/10.1016/j.molcel.2011.08.022</a>
Tournier, V., Topham, C. M., Gilles, A., David, B., Folgoas, C., Moya-Leclair, E., Kamionka, E., Desrousseaux, M. L., Texier, H., Gavalda, S., Cot, M., Guémard, E., Dalibey, M., Nomme, J., Cioci, G., Barbe, S., Chateau, M., André, I., Duquesne, S., & Marty, A. (2020). An engineered PET depolymerase to break down and recycle plastic bottles. Nature, 580(7802), 216-219. <a href="https://doi.org/10.1038/s41586-020-2149-4">https://doi.org/10.1038/s41586-020-2149-4</a>
Wu, P., Wang, Z., Zhu, Q., Xie, Z., Mei, Y., Liang, Y., & Chen, Z. (2021). Stress preadaptation and overexpression of rpoS and hfq genes increase stress resistance of Pseudomonas fluorescens ATCC13525. Microbiological research, 250, 126804. <a href="https://doi.org/10.1016/j.micres.2021.126804">https://doi.org/10.1016/j.micres.2021.126804</a>
Wu, W., Zhang, L., Yao, L., Tan, X., Liu, X., & Lu, X. (2015). Genetically assembled fluorescent biosensor for in situ detection of bio-synthesized alkanes. Scientific reports, 5, 10907. <a href="https://doi.org/10.1038/srep10907">https://doi.org/10.1038/srep10907</a>