<p>Thiosulfate (S2O32-) is a promising biomarker for gut inflammation. Bacterial sensors based on ThsS/R, two-component systems, can be used to diagnose colonic inflammation (colitis) through flow cytometry analysis of colon and fecal samples by responding to thiosulfate.</p>
−
<p>In a previous study, the sensitivity and specificity of thiosulfate sensors were measured.</p>
<figcaption><b>Figure 1:</b>Characterization of the thiosulfate sensor ThsSR. (Kristina N-M Daeffler et al. 2017)</figcaption>
−
</figure>
−
</html>
−
−
<p>In another literature, the ThsS/R-mediated expression of sfGFP was optimized in response to thiosulfate at transcription to increase the induction ratio and enhance the output intensity.</p>
<figcaption><b>Figure 2:</b>Fluorescence output of each gene circuit. (Zhen-Ping Zou et al. 2023)</figcaption>
−
</figure>
−
</html>
−
−
<p>It tested the sensitivity of the biosensor to thiosulfate and the specificity by using a panel of metabolites in the gut. The result showed that the biosensor system on pWT-CS2R4 produced a detectable and especially specific signal for a minimal thiosulfate concentration (as low as 0.016 mM).</p>
# Zou ZP, Du Y, Fang TT, Zhou Y, Ye BC. Biomarker-responsive engineered probiotic diagnoses, records, and ameliorates inflammatory bowel disease in mice. Cell Host Microbe. 2023 Feb 8;31(2):199-212.e5.
Latest revision as of 12:10, 6 October 2023
ThsR
Background
ThsS (BBa_K2507000) and ThsR (BBa_K2507001), both codon-optimized for E. coli, are two basic parts which belong to the two-component system from the marine bacterium Shewanella halifaxensis. ThsS is the membrane-bound sensor kinase (SK) which can sense thiosulfate outside the cell, and ThsR is the DNA-binding response regulator(RR).
Sequence and Features
Assembly Compatibility:
10
COMPATIBLE WITH RFC[10]
12
COMPATIBLE WITH RFC[12]
21
COMPATIBLE WITH RFC[21]
23
COMPATIBLE WITH RFC[23]
25
COMPATIBLE WITH RFC[25]
1000
INCOMPATIBLE WITH RFC[1000]
Illegal SapI.rc site found at 13
Reference
Daeffler, K. N., Galley, J. D., Sheth, R. U., Ortiz‐Velez, L. C., Bibb, C. O., & Shroyer, N. F., et al. (2017). Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. Molecular Systems Biology, 13(4), 923.
Jackson MR, Melideo SL, Jorns MS (2012) Human sulfide: quinone oxidoreductase catalyzes the first step in hydrogen sulfide metabolism and produces a sulfane sulfur metabolite. Biochemistry 51: 6804 – 6815
Levitt MD, Furne J, Springfield J, Suarez F, DeMaster E (1999) Detoxification of hydrogen sulfide and methanethiol in the cecal mucosa. J Clin Invest 104: 1107 – 1114
Schmidl SR, Sheth RU, Wu A, Tabor JJ (2014) Refactoring and optimization of light-switchable Escherichia coli two-component systems. ACS Synth Biol 3: 820 – 831
Vitvitsky V, Yadav PK, Kurthen A, Banerjee R (2015) Sulfide oxidation by a noncanonical pathway in red blood cells generates thiosulfate and polysulfides. J Biol Chem 290: 8310 – 8320