Difference between revisions of "Part:BBa K4765118"

(Introduction)
Line 7: Line 7:
  
 
===Introduction===
 
===Introduction===
Mycosporine-like amino acids (MAAs), act as a sunscreen for the biofilm. This composite part contains five enyzmes in the MAA biosynthesis pathway. All the enzymes are constructed into ribozyme-assisted polycistronic co-expression system:pRAP.  
+
Mycosporine-like amino acids (MAAs), act as a sunscreen for the biofilm. This composite part contains five enyzmes in the MAA biosynthesis pathway. All the enzymes are constructed into ribozyme-assisted polycistronic co-expression system:pRAP.
 +
{|
 +
| <html><img style="width:640px" src="https://static.igem.wiki/teams/4765/wiki/zsl/t-fudan-maa-pathway-wyj.png" alt="contributed by Fudan iGEM 2023"></html>
 +
|-
 +
| '''Figure1 The biosynthetic pathway of shinorine, porphyra-334, palythine-Ser, and palythine-Thr'''
 +
|}
 +
 
 
===Usage and Biology===
 
===Usage and Biology===
 
Biosynthetic route of MAA initiates with the generation of 4-deoxygadusol (4-DG) from sedoheptulose 7-phosphate, an intermediate within the pentose phosphate pathway. This process is catalyzed by two enzymes: a dimethyl 4-degadusol synthase (DDGS; MysA) and an Omethyltrans-ferase (O-MT; MysB). Subsequently, 4-DG undergoes a transformation into mycosporine-glycine(MG) through an ATP-grasp enzyme MysC, which introduces an amino acid moiety, primarily L-Gly. MAA analogues such as shinorine or porphyra-334 are further derived from MG by the D-Ala-D-Ala ligase-like enzyme MysD. In the final step, the biosynthesis is completed with a nonheme iron-(II)- and 2oxoglutarate-dependent (Fe/2OG) oxygenase MysH, leading to the production of palythines.
 
Biosynthetic route of MAA initiates with the generation of 4-deoxygadusol (4-DG) from sedoheptulose 7-phosphate, an intermediate within the pentose phosphate pathway. This process is catalyzed by two enzymes: a dimethyl 4-degadusol synthase (DDGS; MysA) and an Omethyltrans-ferase (O-MT; MysB). Subsequently, 4-DG undergoes a transformation into mycosporine-glycine(MG) through an ATP-grasp enzyme MysC, which introduces an amino acid moiety, primarily L-Gly. MAA analogues such as shinorine or porphyra-334 are further derived from MG by the D-Ala-D-Ala ligase-like enzyme MysD. In the final step, the biosynthesis is completed with a nonheme iron-(II)- and 2oxoglutarate-dependent (Fe/2OG) oxygenase MysH, leading to the production of palythines.

Revision as of 05:47, 11 October 2023


ribozyme connected: MysABCDH

contributed by Fudan iGEM 2023

Introduction

Mycosporine-like amino acids (MAAs), act as a sunscreen for the biofilm. This composite part contains five enyzmes in the MAA biosynthesis pathway. All the enzymes are constructed into ribozyme-assisted polycistronic co-expression system:pRAP.

contributed by Fudan iGEM 2023
Figure1 The biosynthetic pathway of shinorine, porphyra-334, palythine-Ser, and palythine-Thr

Usage and Biology

Biosynthetic route of MAA initiates with the generation of 4-deoxygadusol (4-DG) from sedoheptulose 7-phosphate, an intermediate within the pentose phosphate pathway. This process is catalyzed by two enzymes: a dimethyl 4-degadusol synthase (DDGS; MysA) and an Omethyltrans-ferase (O-MT; MysB). Subsequently, 4-DG undergoes a transformation into mycosporine-glycine(MG) through an ATP-grasp enzyme MysC, which introduces an amino acid moiety, primarily L-Gly. MAA analogues such as shinorine or porphyra-334 are further derived from MG by the D-Ala-D-Ala ligase-like enzyme MysD. In the final step, the biosynthesis is completed with a nonheme iron-(II)- and 2oxoglutarate-dependent (Fe/2OG) oxygenase MysH, leading to the production of palythines.

Characterization

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 1272
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI.rc site found at 1064
    Illegal BsaI.rc site found at 2666
    Illegal BsaI.rc site found at 3785
    Illegal BsaI.rc site found at 5714


Reference