Difference between revisions of "Part:BBa K4586010"
Ahmed Mattar (Talk | contribs) (→Usage) |
Ahmed Mattar (Talk | contribs) |
||
Line 22: | Line 22: | ||
lang=EN style='font-size:11.0pt;line-height:115%'>Figure 1: This figure illustrates the design of our biological circuit coding for booster genes(SDC4,STEAP3 and NadB) and their role in increasing the synthetic capacity of MSCs to secrete exosomes that carry our therapeutic agent represented in Cas12k/gBAFF-R | lang=EN style='font-size:11.0pt;line-height:115%'>Figure 1: This figure illustrates the design of our biological circuit coding for booster genes(SDC4,STEAP3 and NadB) and their role in increasing the synthetic capacity of MSCs to secrete exosomes that carry our therapeutic agent represented in Cas12k/gBAFF-R | ||
</span></p></div></html> | </span></p></div></html> | ||
+ | ==Literature Characterization== | ||
+ | The study created a reporter construct by joining the C-terminus of CD63, one of the most used exosome markers, to nanoluc (nluc), a tiny and potent bioluminescence reporter10. After progressive centrifugation to eliminate masking signals12, luminescence in the cell-culture supernatant was measured. This reporter gene was co-transfected with plasmids expressing potential candidates for exosome production augmentation. | ||
+ | <html><div align="center"style="border:solid #17252A; width:50%;float:center;"><img style=" max-width:850px; | ||
+ | width:75%; | ||
+ | height:auto; | ||
+ | position: relative; | ||
+ | top: 50%; | ||
+ | left: 35%; | ||
+ | transform: translate( -50%); | ||
+ | padding-bottom:25px; | ||
+ | padding-top:25px; | ||
+ | "src="https://static.igem.wiki/teams/4586/wiki/literature-characterisation-parts/booster-genes.png"> | ||
+ | <p class=MsoNormal align=center style='text-align:left;border:none;width:98% ;justify-content:center;'><span | ||
+ | lang=EN style='font-size:11.0pt;line-height:115%'>The study found STEAP3 syndecan-4 (SDC4), and (NadB) as potential synthetic exosome production boosters. Combined expression of these genes significantly increased exosome production, and a tricistronic plasmid vector ( known as exosome production booster), which guarantees that transfected cells receive all boosted genes at a fixed ratio ,produced a 15-fold to 40-fold increase (depending on cell conditions) in the luminescence signal in the supernatant | ||
+ | </span></p></div></html> | ||
+ | ==References== | ||
+ | Kojima, R., Bojar, D., Rizzi, G., Hamri, G. C. E., El-Baba, M. D., Saxena, P., ... & Fussenegger, M. (2018). Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nature communications, 9(1), 1305. | ||
<!-- Add more about the biology of this part here | <!-- Add more about the biology of this part here | ||
===Usage and Biology=== | ===Usage and Biology=== |
Revision as of 15:50, 24 September 2023
SDC4
Part Description
This part is an activator of signaling pathways to control cellular processes that arbitrate cell migration, proliferation, endocytosis, and mechano-transduction, as well as its ability to independently activate signaling pathways in response the target-ligand binding as well.
Usage
This part acts to strengthen the duration and intensity of downstream signaling as target-ligand binding occurs. We implemented this in our system to improve the efficacy of our therapeutic agent by increasing the default level of exosome synthesis within our engineered MSC as shown in figure 1.
Figure 1: This figure illustrates the design of our biological circuit coding for booster genes(SDC4,STEAP3 and NadB) and their role in increasing the synthetic capacity of MSCs to secrete exosomes that carry our therapeutic agent represented in Cas12k/gBAFF-R
Literature Characterization
The study created a reporter construct by joining the C-terminus of CD63, one of the most used exosome markers, to nanoluc (nluc), a tiny and potent bioluminescence reporter10. After progressive centrifugation to eliminate masking signals12, luminescence in the cell-culture supernatant was measured. This reporter gene was co-transfected with plasmids expressing potential candidates for exosome production augmentation.
The study found STEAP3 syndecan-4 (SDC4), and (NadB) as potential synthetic exosome production boosters. Combined expression of these genes significantly increased exosome production, and a tricistronic plasmid vector ( known as exosome production booster), which guarantees that transfected cells receive all boosted genes at a fixed ratio ,produced a 15-fold to 40-fold increase (depending on cell conditions) in the luminescence signal in the supernatant
References
Kojima, R., Bojar, D., Rizzi, G., Hamri, G. C. E., El-Baba, M. D., Saxena, P., ... & Fussenegger, M. (2018). Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nature communications, 9(1), 1305. Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 201
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]