Difference between revisions of "Part:BBa K4586012"

(Usage)
(Usage)
Line 7: Line 7:
  
 
==Usage==
 
==Usage==
This part is implemented in our system to improve the efficacy of our therapeutic agent by increasing the default level of exosome synthesis within our engineered MSCs. This enzyme can therefore speed up the metabolism of gene-modified cells and, in our project, also accelerate exosome biogenesis.  
+
This part is implemented in our system to improve the efficacy of our therapeutic agent by increasing the default level of exosome synthesis within our engineered MSCs. This enzyme can therefore speed up the metabolism of gene-modified cells and, in our project, also accelerate exosome biogenesis as shown in figure 1.  
 +
<html><div align="center"style="border:solid #17252A; width:100%;float:center;"><img style="                              max-width:850px;
 +
width:100%;
 +
height:auto;
 +
position: relative;
 +
top: 50%;
 +
left: 45%;
 +
transform: translate( -50%);
 +
padding-bottom:25px;
 +
padding-top:25px;
 +
"src="https://static.igem.wiki/teams/4586/wiki/parts/booster-gene.png
 +
">
 +
<p class=MsoNormal align=center style='text-align:left;border:none;width:98% ;justify-content:center;'><span
 +
lang=EN style='font-size:11.0pt;line-height:115%'>Figure 1: This figure illustrates the design of our biological circuit coding for booster genes(SDC4,STEAP3 and NadB) and their role in increasing the synthetic capacity of MSCs to secrete exosomes that carry our therapeutic agent represented in Cas12k/gBAFF-R
 +
  </span></p></div></html>
  
 
<!-- Add more about the biology of this part here
 
<!-- Add more about the biology of this part here

Revision as of 14:17, 22 September 2023


NadB

Part Description

NadB is the first enzyme in the NAD biosynthesis pathway that is useful in the production of ATP by increasing the metabolism rate of gene-modified cells through the FAD-dependent oxidation of L-aspartate to iminoaspartate, which has an essential role in exosome synthesis.

Usage

This part is implemented in our system to improve the efficacy of our therapeutic agent by increasing the default level of exosome synthesis within our engineered MSCs. This enzyme can therefore speed up the metabolism of gene-modified cells and, in our project, also accelerate exosome biogenesis as shown in figure 1.

Figure 1: This figure illustrates the design of our biological circuit coding for booster genes(SDC4,STEAP3 and NadB) and their role in increasing the synthetic capacity of MSCs to secrete exosomes that carry our therapeutic agent represented in Cas12k/gBAFF-R

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal AgeI site found at 406
    Illegal AgeI site found at 1026
  • 1000
    COMPATIBLE WITH RFC[1000]