Difference between revisions of "Part:BBa K4586011"

(Usage)
(Usage)
Line 7: Line 7:
  
 
==Usage==
 
==Usage==
This part is implemented in our system to improve the efficacy of our therapeutic agent by increasing the default level of exosome synthesis within our engineered MSC. The only mechanism discovered is that TSAP6 modulates its downstream transferrin receptor genes, which is a pathway related to exosomal secretion. However, its specific mechanism for promoting exosome secretion is still unknown.
+
This part is implemented in our system to improve the efficacy of our therapeutic agent by increasing the default level of exosome synthesis within our engineered MSC. The only mechanism discovered is that TSAP6 modulates its downstream transferrin receptor genes, which is a pathway related to exosomal secretion. However, its specific mechanism for promoting exosome secretion is still unknown as shown in figure 1.
 +
<html><div align="center"style="border:solid #17252A; width:100%;float:center;"><img style="                              max-width:850px;
 +
width:100%;
 +
height:auto;
 +
position: relative;
 +
top: 50%;
 +
left: 45%;
 +
transform: translate( -50%);
 +
padding-bottom:25px;
 +
padding-top:25px;
 +
"src="https://static.igem.wiki/teams/4586/wiki/parts/booster-gene.png
 +
">
 +
<p class=MsoNormal align=center style='text-align:left;border:none;width:98% ;justify-content:center;'><span
 +
lang=EN style='font-size:11.0pt;line-height:115%'>Figure 1: This figure illustrates the design of our biological circuit coding for booster genes(SDC4,STEAP3 and NadB) and their role in increasing the synthetic capacity of MSCs to secrete exosomes that carry our therapeutic agent represented in Cas12k/gBAFF-R
 +
  </span></p></div></html>
 
<!-- Add more about the biology of this part here
 
<!-- Add more about the biology of this part here
 
===Usage and Biology===
 
===Usage and Biology===

Revision as of 14:17, 22 September 2023


STEAP3

Part Description

STEAP3 is a metallic reductase enzyme that is also known as TSAP6, which is involved in promoting apoptosis and exosome biogenesis and can reduce iron and copper. It has the ability to convert iron from an insoluble ferric to a soluble ferrous form.

Usage

This part is implemented in our system to improve the efficacy of our therapeutic agent by increasing the default level of exosome synthesis within our engineered MSC. The only mechanism discovered is that TSAP6 modulates its downstream transferrin receptor genes, which is a pathway related to exosomal secretion. However, its specific mechanism for promoting exosome secretion is still unknown as shown in figure 1.

Figure 1: This figure illustrates the design of our biological circuit coding for booster genes(SDC4,STEAP3 and NadB) and their role in increasing the synthetic capacity of MSCs to secrete exosomes that carry our therapeutic agent represented in Cas12k/gBAFF-R

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 1103
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal SapI site found at 693