Difference between revisions of "Part:BBa K4719001"
(→Usage and Biology) |
|||
Line 13: | Line 13: | ||
===Usage and Biology=== | ===Usage and Biology=== | ||
− | ''AGM1'' is phosphoacetl-glucosamine mutase. The protein sequence is from ''Candida | + | ''AGM1'' is phosphoacetl-glucosamine mutase. The protein sequence is from ''Candida albicans''. This protein catalyzes the conversion of GlcNAc-6-P into GlcNAc-1-P during the synthesis of uridine diphosphate/UDP-GlcNAc, which is a biosynthetic precursor of chitin and also supplies the amino sugars for N-linked oligosaccharides of glycoproteins [https://parts.igem.org/Part:BBa_K4719001#References (1)]. This part is used in [https://parts.igem.org/Part:BBa_K4719013 BBa_K4719013]and [https://parts.igem.org/Part:BBa_K4719014 BBa_K4719014]. |
===Characterization=== | ===Characterization=== |
Revision as of 15:59, 19 September 2023
AGM1
Introduction
Vilnius Lithuania iGEM 2023 team's goal was to create a universal synthetic biology system in Komagataeibacter xylinus for in vivo bacterial cellulose polymer composition modification. Firstly, we chose to produce a cellulose-chitin polymer that would later be deacetylated, creating bacterial cellulose-chitosan. This polymer is an easily modifiable platform when compared to bacterial cellulose. The enhanced chemical reactivity of bacterial cellulose-chitosan polymer allows for specific functionalizations in the biomedicine field, such as scaffold design.
Bacterial cellulose-chitin polymer was achieved by increasing the production of UDP-N-acetylglucosamine, which can be recognized as a viable substrate for cellulose synthase and incorporated in the bacterial cellulose polymer. We employed two strategies to produce this material. The first approach was to add N-acetylglucosamine into the growth medium BBa_K4719013, and the second one was the production of N-acetylglucosamine by K. xylinus from other sugars such as glucose, fructose, and saccharose in the growth medium BBa_K4719014.
Usage and Biology
AGM1 is phosphoacetl-glucosamine mutase. The protein sequence is from Candida albicans. This protein catalyzes the conversion of GlcNAc-6-P into GlcNAc-1-P during the synthesis of uridine diphosphate/UDP-GlcNAc, which is a biosynthetic precursor of chitin and also supplies the amino sugars for N-linked oligosaccharides of glycoproteins (1). This part is used in BBa_K4719013and BBa_K4719014.
Characterization
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 1429
Illegal BglII site found at 1528 - 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
References
1. Mio, T. et al. (2000) ‘Functional cloning and mutational analysis of the human cDNA for phosphoacetylglucosamine mutase: identification of the amino acid residues essential for the catalysis’, Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1492(2–3), pp. 369–376. doi:10.1016/s0167-4781(00)00120-2.