Difference between revisions of "Part:BBa K4719017"

Line 2: Line 2:
 
__NOTOC__
 
__NOTOC__
 
<partinfo>BBa_K4719017 short</partinfo>
 
<partinfo>BBa_K4719017 short</partinfo>
 +
===Introduction===
 +
Vilnius Lithuania iGEM 2023 team's goal was to create a universal synthetic biology system in ''Komagataeibacter xylinus'' for ''in vivo'' bacterial cellulose polymer composition modification. Firstly, we chose to produce a cellulose-chitin polymer that would later be deacetylated, creating bacterial cellulose-chitosan. This polymer is an easily modifiable platform when compared to bacterial cellulose. The enhanced chemical reactivity of bacterial cellulose-chitosan polymer allows for specific functionalizations in the biomedicine field, such as scaffold design. As a second approach, we designed indigo-dyed cellulose that could be used as a green chemistry way to apply cellulose in the textile industry. Lastly, we have achieved a composite of bacterial cellulose and polyhydroxybutyrate (PHB), which is synthesized by ''K. xylinus''.
 +
<br>
 +
<br>
 +
We produced bacterial cellulose - PHB composite by introducing PHB synthesis operon into ''K. xylinus'' [https://parts.igem.org/Part:BBa_K4719017 BBa_K4719017]. The bacteria simultaneously produce both polymers combined into the same material during the purification process.
  
Polyhydroxybutyrate synthesis operon (phaC, phaA, phaB) assembled into pSEVA331-Bb backbone, to produce PHB along with bacterial cellulose in K. xylinus. This copolymer is an alternative to petroleum-based plastics.
+
===Usage and Biology===
 +
 
 +
This construct is a polyhydroxybutyrate synthesis operon (phaC, phaA, phaB) producing PHB along with bacterial cellulose in ''K. xylinus''. PHB is stored in bacteria intercellularly while cellulose is secreted outside of the cell. To combine both of these polymers washing procedure at boiling temperatures is required.
 +
 
 +
Bacterial cellulose-PHB composite is an alternative to petroleum-based plastics. The advantage of this material is enhanced strenght and resistance, accelerated rate of biodegradation [https://parts.igem.org/Part:BBa_K4719017#References (1)].
 +
 
 +
Since polymer production occurs in ''K. xylinus'' requires a specific plasmid (pSEVA331-Bb) backbone for successful replication. We choose to use [https://parts.igem.org/Part:BBa_K1321313 BBa_K1321313] as it was characterized by iGEM14_Imperial team as the most suitable synthetic biology tool for ''Komagateibacter'' species. We performed PCR of the plasmid eliminating mRFP to preserve Anderson promoter J23104 [https://parts.igem.org/Part:BBa_J23104 BBa_J23104], RBS [https://parts.igem.org/Part:BBa_B0034 BBa_B0034] and terminator [https://parts.igem.org/Part:BBa_B0015 BBa_B0015]. ''phaC'', ''phaA'', ''phaB'' was assembled into the backbone by Gibson assembly.
  
 
===Regulated PHB production in ''K. xylinus''===
 
===Regulated PHB production in ''K. xylinus''===
We wanted to regulate the amount of PHB in the bacterial cellulose-polyhydroxy butyrate copolymer, therefore the production of PHB was put under an inducible araC-pBAD promoter. Production of PHB is induced after sufficient amount of bacterial cellulose has grown.
+
 
 +
We wanted to regulate the amount of PHB in the bacterial cellulose-polyhydroxy butyrate copolymer therefore the production of PHB was put under an inducible araC-pBAD promoter. Production of PHB is induced after a sufficient amount of bacterial cellulose has grown.  
 +
 
  
 
<!-- Add more about the biology of this part here
 
<!-- Add more about the biology of this part here
Line 20: Line 33:
 
<partinfo>BBa_K4719017 parameters</partinfo>
 
<partinfo>BBa_K4719017 parameters</partinfo>
 
<!-- -->
 
<!-- -->
 +
===References===
 +
1.Ding, R. et al. (2021) ‘The facile and controllable synthesis of a bacterial cellulose/polyhydroxybutyrate composite by co-culturing Gluconacetobacter xylinus and Ralstonia eutropha’, Carbohydrate Polymers, 252, p. 117137. doi:10.1016/j.carbpol.2020.117137.

Revision as of 19:25, 19 September 2023


phaCAB operon for polyhydroxybutyrate synthesis in K. xylinus

Introduction

Vilnius Lithuania iGEM 2023 team's goal was to create a universal synthetic biology system in Komagataeibacter xylinus for in vivo bacterial cellulose polymer composition modification. Firstly, we chose to produce a cellulose-chitin polymer that would later be deacetylated, creating bacterial cellulose-chitosan. This polymer is an easily modifiable platform when compared to bacterial cellulose. The enhanced chemical reactivity of bacterial cellulose-chitosan polymer allows for specific functionalizations in the biomedicine field, such as scaffold design. As a second approach, we designed indigo-dyed cellulose that could be used as a green chemistry way to apply cellulose in the textile industry. Lastly, we have achieved a composite of bacterial cellulose and polyhydroxybutyrate (PHB), which is synthesized by K. xylinus.

We produced bacterial cellulose - PHB composite by introducing PHB synthesis operon into K. xylinus BBa_K4719017. The bacteria simultaneously produce both polymers combined into the same material during the purification process.

Usage and Biology

This construct is a polyhydroxybutyrate synthesis operon (phaC, phaA, phaB) producing PHB along with bacterial cellulose in K. xylinus. PHB is stored in bacteria intercellularly while cellulose is secreted outside of the cell. To combine both of these polymers washing procedure at boiling temperatures is required.

Bacterial cellulose-PHB composite is an alternative to petroleum-based plastics. The advantage of this material is enhanced strenght and resistance, accelerated rate of biodegradation (1).

Since polymer production occurs in K. xylinus requires a specific plasmid (pSEVA331-Bb) backbone for successful replication. We choose to use BBa_K1321313 as it was characterized by iGEM14_Imperial team as the most suitable synthetic biology tool for Komagateibacter species. We performed PCR of the plasmid eliminating mRFP to preserve Anderson promoter J23104 BBa_J23104, RBS BBa_B0034 and terminator BBa_B0015. phaC, phaA, phaB was assembled into the backbone by Gibson assembly.

Regulated PHB production in K. xylinus

We wanted to regulate the amount of PHB in the bacterial cellulose-polyhydroxy butyrate copolymer therefore the production of PHB was put under an inducible araC-pBAD promoter. Production of PHB is induced after a sufficient amount of bacterial cellulose has grown.


Sequence and Features


Assembly Compatibility:
  • 10
    INCOMPATIBLE WITH RFC[10]
    Illegal SpeI site found at 37
    Illegal PstI site found at 824
    Illegal PstI site found at 1397
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal NheI site found at 7
    Illegal NheI site found at 30
    Illegal SpeI site found at 37
    Illegal PstI site found at 824
    Illegal PstI site found at 1397
    Illegal NotI site found at 200
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 642
    Illegal BamHI site found at 3039
  • 23
    INCOMPATIBLE WITH RFC[23]
    Illegal SpeI site found at 37
    Illegal PstI site found at 824
    Illegal PstI site found at 1397
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal SpeI site found at 37
    Illegal PstI site found at 824
    Illegal PstI site found at 1397
    Illegal NgoMIV site found at 253
    Illegal NgoMIV site found at 368
    Illegal NgoMIV site found at 602
    Illegal NgoMIV site found at 914
    Illegal NgoMIV site found at 1193
    Illegal NgoMIV site found at 1606
    Illegal NgoMIV site found at 1673
    Illegal AgeI site found at 341
  • 1000
    COMPATIBLE WITH RFC[1000]


References

1.Ding, R. et al. (2021) ‘The facile and controllable synthesis of a bacterial cellulose/polyhydroxybutyrate composite by co-culturing Gluconacetobacter xylinus and Ralstonia eutropha’, Carbohydrate Polymers, 252, p. 117137. doi:10.1016/j.carbpol.2020.117137.