Difference between revisions of "Part:BBa K4414010"
Line 79: | Line 79: | ||
===Reference=== | ===Reference=== | ||
− | + | 1. Weikum, E. R., Knuesel, M. T., Ortlund, E. A., & Yamamoto, K. R. (2017). Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nature reviews. Molecular cell biology, 18(3), 159–174. https://doi.org/10.1038/nrm.2016.152 | |
− | + | 2. Lu, N. Z., & Cidlowski, J. A. (2005). Translational Regulatory Mechanisms Generate N-Terminal Glucocorticoid Receptor Isoforms with Unique Transcriptional Target Genes. Molecular Cell, 18(3), 331-342. doi:https://doi.org/10.1016/j.molcel.2005.03.025 | |
− | + | 3. Shao, J., Qiu, X., & Xie, M. (2021). Engineering Mammalian Cells to Control Glucose Homeostasis. Methods in molecular biology, 2312, 35-57 . |
Revision as of 10:12, 11 October 2022
NR3C1
This basic part consists of the amino-terminal domain (NTD), DNA binding domain (DBD), hinge region and ligand binding domain (LBD)(Part:BBa_K4414000).(Weikum et al., 2017)
Usage and Biology
As glucocorticoid receptor, it can function both as a transcription factor that binds to glucocorticoid response elements (GRE) in the promoters of glucocorticoid responsive genes to activate their transcription, and as a regulator of other transcription factors. This receptor is typically found in the cytoplasm, but upon ligand binding, is transported into the nucleus.(Lu & Cidlowski, 2005) Figure1. Schematic figure of BBa_K4414010.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Functional Validation
Method
1. HEK-293T cells were co-transfected with plasmids encoding both BBa_K4414010and SEAP with GRE3 or GRE6. Cells were treated with 10, 50, or 100 nM Glucocorticoids 6 h post-transfection. Cells without glucocorticoid treatment were used as control. Culture medium was collected at 48 h post glucocorticoids treatment. SEAP activity was measured according to a published protocol. (Shao et al., 2021)
Figure 2: Cotransfected our upstream plasmid with the upstream gene and a plasmid with TCE-Tyr into cells
2. HEK-293T cells were transfected with plasmid encoding BBa_K4414010 and (Part:BBa_K1123017). Cells were treated with 100 nM Glucocorticoids 6 h post-transfection. Cells without glucocorticoid treatment were used as control. The fluorescence intensity of cells was observed 24 h after posting glucocorticoids treatment.
Result
Results showed increased SEAP expression in glucocorticoid-treated cells compared to the non-treated control (1-2 folds). A dose dependence was observed within 0-100 nM of glucocorticoid (Figure 2). The fluorescence microscopic image showed GR locates in the nucleus whether treated with glucocorticoids or not (Figure 3). Figure3. Glucocorticoid-stimulated transcriptional activation of SEAP mediated by BBa_K4414010. Figure4. Fluorescence intensity of cells mediated by BBa_K4414010 and (Part:BBa_K1123017).
Reference
1. Weikum, E. R., Knuesel, M. T., Ortlund, E. A., & Yamamoto, K. R. (2017). Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nature reviews. Molecular cell biology, 18(3), 159–174. https://doi.org/10.1038/nrm.2016.152
2. Lu, N. Z., & Cidlowski, J. A. (2005). Translational Regulatory Mechanisms Generate N-Terminal Glucocorticoid Receptor Isoforms with Unique Transcriptional Target Genes. Molecular Cell, 18(3), 331-342. doi:https://doi.org/10.1016/j.molcel.2005.03.025
3. Shao, J., Qiu, X., & Xie, M. (2021). Engineering Mammalian Cells to Control Glucose Homeostasis. Methods in molecular biology, 2312, 35-57 .