Difference between revisions of "Part:BBa K4387004"
Line 3: | Line 3: | ||
<partinfo>BBa_K4387004 short</partinfo> | <partinfo>BBa_K4387004 short</partinfo> | ||
− | + | =Usage and Biology= | |
This part consists of the <html><a href="https://parts.igem.org/Part:BBa_K2116002">ETH promoter pNorV</a></html>, superfolder GFP preceded by one strong ribosomal binding site (<html><a href="https://parts.igem.org/Part:BBa_B0034">BBa_B0034</a></html>), the <html><a href="https://parts.igem.org/Part:BBa_K4387001">NorR regulator</a></html>, and a <html><a href="https://parts.igem.org/Part:BBa_B0015">double forward terminator</a></html>. We chose a high-copy backbone from Twist Bioscience for this part. We wanted to compare this ETH NorV promoter to the pNorVβ promoter and see which one was better suited for sensing nitric oxide at lower concentration ranges. According to figure__, when tested at different concentration levels, the pNorVβ had higher responses to DETA/NO induction than the NorV promoter of the ETH 2016 team. | This part consists of the <html><a href="https://parts.igem.org/Part:BBa_K2116002">ETH promoter pNorV</a></html>, superfolder GFP preceded by one strong ribosomal binding site (<html><a href="https://parts.igem.org/Part:BBa_B0034">BBa_B0034</a></html>), the <html><a href="https://parts.igem.org/Part:BBa_K4387001">NorR regulator</a></html>, and a <html><a href="https://parts.igem.org/Part:BBa_B0015">double forward terminator</a></html>. We chose a high-copy backbone from Twist Bioscience for this part. We wanted to compare this ETH NorV promoter to the pNorVβ promoter and see which one was better suited for sensing nitric oxide at lower concentration ranges. According to figure__, when tested at different concentration levels, the pNorVβ had higher responses to DETA/NO induction than the NorV promoter of the ETH 2016 team. |
Revision as of 16:54, 8 October 2022
Nitric Oxide Sensing Genetic Circuit with Promoter BBa_K2116002
Usage and Biology
This part consists of the ETH promoter pNorV, superfolder GFP preceded by one strong ribosomal binding site (BBa_B0034), the NorR regulator, and a double forward terminator. We chose a high-copy backbone from Twist Bioscience for this part. We wanted to compare this ETH NorV promoter to the pNorVβ promoter and see which one was better suited for sensing nitric oxide at lower concentration ranges. According to figure__, when tested at different concentration levels, the pNorVβ had higher responses to DETA/NO induction than the NorV promoter of the ETH 2016 team.
This construct was tested in the bacterial strain E.coli Nissle 1917.
Characterization
Measurements
Sequence and Features
Assembly Compatibility:
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal XhoI site found at 742
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]