Difference between revisions of "Part:BBa K4140010"
(→Usage) |
Ahmed Wael (Talk | contribs) (→Literature Characterization) |
||
Line 10: | Line 10: | ||
PheP, an intrinsic membrane transporter that employs the proton motive force to antiport L-phenylalanine and L-tyrosine, naturally transports phenylalanine across membranes via phenylalanine-specific permease. We employ the component to increase the intracellular concentration of phenylalanine, which improves the permeability of cells to phenylalanine and triggers our circuit to express PAH | PheP, an intrinsic membrane transporter that employs the proton motive force to antiport L-phenylalanine and L-tyrosine, naturally transports phenylalanine across membranes via phenylalanine-specific permease. We employ the component to increase the intracellular concentration of phenylalanine, which improves the permeability of cells to phenylalanine and triggers our circuit to express PAH | ||
− | == | + | ==Characterization of Mutational Landscape== |
− | + | After creating a multiple sequence alignment of the protein sequence and predicting mutational landscapes, the effect of these mutations on the evolutionary fitness of the protein is tested. The prediction of the mutational landscape by saturation mutagenesis of the premease protein. The (H37K) mutation, as depicted in the chart, had the greatest score when compared to other mutations. On the other hand, it's clear that the (A153L) had the least evolutionary fitness for premease protein. As displayed in Figure(1) | |
− | + | ||
+ | [[File:Permease.png|thumb|Right|Figure 1. (shows the mutational landscape of the Permease protein.) ]] | ||
+ | ><br><br><br><br><br><br><br><br><br><br><br> | ||
==References== | ==References== |
Revision as of 11:44, 3 October 2022
Permease
Part Description
The bacterium Escherichia coli naturally transports phenylalanine across membranes via PheP (Phenylalanine-specific permease). PheP is a single, integral membrane transporter that uses the proton motive force to antiport L-phenylalanine and L-tyrosine. This transporter's activity under natural expression is known to range between 9 and 17,5.
Usage
PheP, an intrinsic membrane transporter that employs the proton motive force to antiport L-phenylalanine and L-tyrosine, naturally transports phenylalanine across membranes via phenylalanine-specific permease. We employ the component to increase the intracellular concentration of phenylalanine, which improves the permeability of cells to phenylalanine and triggers our circuit to express PAH
Characterization of Mutational Landscape
After creating a multiple sequence alignment of the protein sequence and predicting mutational landscapes, the effect of these mutations on the evolutionary fitness of the protein is tested. The prediction of the mutational landscape by saturation mutagenesis of the premease protein. The (H37K) mutation, as depicted in the chart, had the greatest score when compared to other mutations. On the other hand, it's clear that the (A153L) had the least evolutionary fitness for premease protein. As displayed in Figure(1)
>
References
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12INCOMPATIBLE WITH RFC[12]Illegal NheI site found at 37
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]