Difference between revisions of "Part:BBa K4083004"
Arsenorazbek (Talk | contribs) (→Part functionality) |
Arsenorazbek (Talk | contribs) |
||
Line 22: | Line 22: | ||
===Part functionality=== | ===Part functionality=== | ||
+ | We used our assembled nadE primers to extract the nadE gene. (https://parts.igem.org/Part:BBa_K4083019, https://parts.igem.org/Part:BBa_K4083020). Obtained genes were amplified in a PCR machine. Then, these PCR products were analyzed in gel electrophoresis: | ||
+ | |||
https://static.igem.org/mediawiki/parts/f/f6/NadE.jpg | https://static.igem.org/mediawiki/parts/f/f6/NadE.jpg | ||
+ | |||
+ | We additionally conducted another gel electrophoresis: | ||
https://static.igem.org/mediawiki/parts/c/c8/T--NU_Kazakhstan--figure-1.1.jpg | https://static.igem.org/mediawiki/parts/c/c8/T--NU_Kazakhstan--figure-1.1.jpg | ||
− | Figure 1.1 Gel electrophoresis of PCR products. | + | Figure 1.1 Gel electrophoresis of PCR products. |
− | Key: | + | Key: |
− | + | E - nadE for restriction digestion with nhe1 (insert for MCS2) | |
− | + | It can be observed that nadE genes were properly extracted. These gels were eluted, and collected genes were inserted into the pRGPDuo2 plasmid. To incorporate nadE genes, we digested plasmids with NheI, SacI, SalI restrictases, and T4 ligase. These plasmids with incorporated nadE gene were electroporated into Pseudomonas putida and Pseudomonas aeruginosa. Unfortunately, due to the lack of time from the COVID-19 situation and late reagents delivery, we were not able to properly insert our genes into P. putida. However, we managed to cultivate P. aeruginosa in kanamycin in LB agar. Then, we extracted these engineered plasmids. | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
===Reference=== | ===Reference=== |
Revision as of 18:46, 21 October 2021
nadE gene of Pseudomonas aeruginosa
nadE from Pseudomonas aeruginosa is coding for NAD synthetase which synthesizes NAD+
Usage and Biology
Our team extracted nadE gene from P. aeruginosa to add it into novel plasmid called pRGPDuo2 for P. putida. Apart from nadE gene, planned to add rhlA and rhlB genes that are responsible for rhamnolipid synthesis. Thus, we predicted that dual expression of NAD synthetase and Rhamnosyltrnasferse can allow P. putida to express rhamnolipids in higher rates.
Pseudaminas aeuriginosa - is gram negative bacilus and opportunistic pathogen. NH(3) dependent NAD-synthetase converts deamido-NAD+ to NAD+ by ATP-dependent amidation [1]. ATP + deamido-NAD+ + NH4+ -> AMP + diphosphate + H+ + NAD+
The NAD+ is important for metabolism in organisms. NAD+ can reduce into NADH during cell digestion like glucolysis or Krebs cycle. Thus, more available NAD+ can lead to faster substrate catabolism. Moreover, NADH interacts with the electron transport chain where it releases one electron and one proton. As an electron moves, more protons exit the bacterial membrane which increases the proton gradient. Finally, to reach equilibrium, protons enter the cell by ATP synthase, and one proton can generate up to 3 ATP molecules this way. Thus, one NADH that releases one proton can generate 3 ATP molecules. Finally, NAD+ can interact with NAD kinase to convert into NADP+ which plays a direct role in biosynthesis of rhamnolipids. [2]
3D model from PDB of NH(3)-dependent NAD(+) synthetase from Pseudomonas aeruginosa [3]. The picture was made in Jmol 14.31.57.
Part functionality
We used our assembled nadE primers to extract the nadE gene. (https://parts.igem.org/Part:BBa_K4083019, https://parts.igem.org/Part:BBa_K4083020). Obtained genes were amplified in a PCR machine. Then, these PCR products were analyzed in gel electrophoresis:
We additionally conducted another gel electrophoresis:
Figure 1.1 Gel electrophoresis of PCR products.
Key:
E - nadE for restriction digestion with nhe1 (insert for MCS2)
It can be observed that nadE genes were properly extracted. These gels were eluted, and collected genes were inserted into the pRGPDuo2 plasmid. To incorporate nadE genes, we digested plasmids with NheI, SacI, SalI restrictases, and T4 ligase. These plasmids with incorporated nadE gene were electroporated into Pseudomonas putida and Pseudomonas aeruginosa. Unfortunately, due to the lack of time from the COVID-19 situation and late reagents delivery, we were not able to properly insert our genes into P. putida. However, we managed to cultivate P. aeruginosa in kanamycin in LB agar. Then, we extracted these engineered plasmids.
Reference
[1] UniProt. (n.d.). nadE - NH(3)-dependent NAD(+) synthetase - Pseudomonas aeruginosa (strain PA7) - nadE gene & protein. https://www.uniprot.org/uniprot/A6VD32
[2] Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular biology of the cell. New York: Garland Science.
[3] UniProt. (n.d.). nadE - NH(3)-dependent NAD(+) synthetase - Pseudomonas aeruginosa (strain PA7) - nadE gene & protein. https://www.uniprot.org/uniprot/A6VD32 Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal XhoI site found at 208
Illegal XhoI site found at 475 - 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 400
Illegal NgoMIV site found at 470
Illegal NgoMIV site found at 691 - 1000COMPATIBLE WITH RFC[1000]