Difference between revisions of "Part:BBa K3771037"
Marvinang02 (Talk | contribs) |
|||
Line 13: | Line 13: | ||
<br> | <br> | ||
− | <br>The <i>ompA</i> promoter facilitates the constitutive expression of OmpA/OprF. Binding of IFN-γ to the OmpA/OprF chimeric protein induces the response of the phage shock protein (Psp) system, a highly conserved stress response system in enterobacteria[1]. Signal transduction from the outer membrane to the inner membrane activates the <i>pspA</i> promoter, initiating expression of CSAD. CSAD catalyzes the decarboxylation of L-Cysteine sulfinic acid into hypotaurine, which is spontaneously oxidized to taurine[2]. | + | <br>The <i>ompA</i> promoter facilitates the constitutive expression of OmpA/OprF. Binding of IFN-γ to the OmpA/OprF chimeric protein induces the response of the phage shock protein (Psp) system, a highly conserved stress response system in enterobacteria[1]. Signal transduction from the outer membrane to the inner membrane activates the <i>pspA</i> promoter, initiating expression of CSAD. CSAD catalyzes the decarboxylation of L-Cysteine sulfinic acid into hypotaurine, which is spontaneously oxidized to taurine[2]. |
<br> | <br> | ||
− | + | <div style="width=100%; display:flex; align-items: center; justify-content: center;"> | |
+ | <img src="https://2021.igem.org/wiki/images/c/c9/T--NCKU_Tainan--taurine_pathway_1.png" style="width:60%;"> | ||
+ | </div> | ||
+ | <p align="center">Fig.1 Taurine pathways in <i>E. coli</i></p> | ||
<br><b style="font-size:1.3rem">Usage</b> | <br><b style="font-size:1.3rem">Usage</b> | ||
<br> | <br> | ||
− | <br>We ligased the | + | <br>We ligased the <i>P<sub>ompA</sub>-ompA/oprF</i> fragment and <i>P<sub>pspA</sub>-csad-6xHis</i> on the pSU expression vector and transformed it into DH5α to complete construction of the plasmid. The his-tag allows for confirmation of CSAD expression by western blot using the anti-6X his-tag antibody. |
<br> | <br> | ||
Line 25: | Line 28: | ||
<br> | <br> | ||
− | <br>Double digestion results are shown in Figure | + | <br>Double digestion results are shown in Figure 2. |
<br> | <br> | ||
<div style="width=100%; display:flex; align-items: center; justify-content: center;"> | <div style="width=100%; display:flex; align-items: center; justify-content: center;"> | ||
− | <img src=" | + | <img src="https://2021.igem.org/wiki/images/2/2c/T--NCKU_Tainan--pspAcsadhv.jpg" style="width:40%;"> |
</div> | </div> | ||
− | <p align="center"> | + | <p align="center">Fig. 2. Double digestion check of <i>P<sub>pspA</sub>-csad-6xHis</i></p> |
− | + | <div style="width=100%; display:flex; align-items: center; justify-content: center;"> | |
+ | <img src="https://2021.igem.org/wiki/images/4/46/T--NCKU_Tainan--colony_pspAcsadhompA.jpg | ||
+ | " style="width:40%;"> | ||
+ | </div> | ||
+ | <p align="center">Fig. 3. Colony PCR confirmation of the construction</p> | ||
<br><b style="font-size:1.3rem">References</b> | <br><b style="font-size:1.3rem">References</b> | ||
<br> | <br> | ||
Line 39: | Line 46: | ||
<a href="https://pubmed.ncbi.nlm.nih.gov/16045608/" alt="" target="_blank">https://pubmed.ncbi.nlm.nih.gov/16045608/</a> | <a href="https://pubmed.ncbi.nlm.nih.gov/16045608/" alt="" target="_blank">https://pubmed.ncbi.nlm.nih.gov/16045608/</a> | ||
<br> | <br> | ||
− | <br>2. Joo Y-C, Ko YJ, You SK, et al. Creating a New Pathway in Corynebacterium glutamicum for the Production of Taurine as a Food Additive. <i>Journal of Agricultural and Food Chemistry</i>. 2018;66(51):13454-13463. doi:10.1021/acs.jafc.8b05093 | + | <br> |
+ | 2. Joo Y-C, Ko YJ, You SK, et al. Creating a New Pathway in Corynebacterium glutamicum for the Production of Taurine as a Food Additive. <i>Journal of Agricultural and Food Chemistry</i>. 2018;66(51):13454-13463. doi:10.1021/acs.jafc.8b05093 | ||
<a href="https://pubmed.ncbi.nlm.nih.gov/30516051/" alt="" target="_blank">https://pubmed.ncbi.nlm.nih.gov/30516051/</a> | <a href="https://pubmed.ncbi.nlm.nih.gov/30516051/" alt="" target="_blank">https://pubmed.ncbi.nlm.nih.gov/30516051/</a> | ||
<br> | <br> |
Revision as of 21:33, 19 October 2021
PpspA-CSAD-6xHis-PompA-OmpA/OprF
Description
This composite part is a component of the IFN-γ sensing system and was used to express the taurine production enzyme, CSAD.
Biology
The ompA promoter facilitates the constitutive expression of OmpA/OprF. Binding of IFN-γ to the OmpA/OprF chimeric protein induces the response of the phage shock protein (Psp) system, a highly conserved stress response system in enterobacteria[1]. Signal transduction from the outer membrane to the inner membrane activates the pspA promoter, initiating expression of CSAD. CSAD catalyzes the decarboxylation of L-Cysteine sulfinic acid into hypotaurine, which is spontaneously oxidized to taurine[2].
Fig.1 Taurine pathways in E. coli
Usage
We ligased the PompA-ompA/oprF fragment and PpspA-csad-6xHis on the pSU expression vector and transformed it into DH5α to complete construction of the plasmid. The his-tag allows for confirmation of CSAD expression by western blot using the anti-6X his-tag antibody.
Characterization
Double digestion results are shown in Figure 2.
Fig. 2. Double digestion check of PpspA-csad-6xHis
Fig. 3. Colony PCR confirmation of the construction
References
1. Darwin AJ. The phage-shock-protein response. Molecular Microbiology. 2005;57(3):621-628. doi:10.1111/j.1365-2958.2005.04694.x https://pubmed.ncbi.nlm.nih.gov/16045608/
2. Joo Y-C, Ko YJ, You SK, et al. Creating a New Pathway in Corynebacterium glutamicum for the Production of Taurine as a Food Additive. Journal of Agricultural and Food Chemistry. 2018;66(51):13454-13463. doi:10.1021/acs.jafc.8b05093 https://pubmed.ncbi.nlm.nih.gov/30516051/
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 12
Illegal BamHI site found at 2794 - 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal AgeI site found at 394
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI.rc site found at 179