Difference between revisions of "Part:BBa K4040003"
Line 18: | Line 18: | ||
===Used in the construction of CAR-Macrophages cells=== | ===Used in the construction of CAR-Macrophages cells=== | ||
+ | CAR-P is a successful strategy for directing macrophages towards cancer targets, and can initiate whole cell eating and trogocytosis leading to cancer cell elimination(Figure 2)[4]. | ||
+ | [[File:T--NMU_China--gamma6.png|thumb|center|700px|<b>Figure 2.</b>10,000 macrophages and 20,000 Raji B cells were incubated together for 44 hr. The number of Rajis was then quantified by FACS. 2–3 technical replicates were acquired each day on three separate days. The number of Rajis in each replicate was normalized to the average number present in the GFP-CAAX macrophage wells on that day. * indicates p<0.01, *** indicates p<0.0001 by two-tailed Fisher Exact Test(a and e) or by Ordinary one way ANOVA with Dunnet’s correction for multiple comparisons; error bars denote 95% confidence intervals.]] | ||
+ | |||
+ | |||
In T cells, phosphorylated ITAMs in CD3z bind to tandem SH2 domains (tSH2) in the kinase ZAP70. Zap70 is not expressed in macrophages, but Syk, a phagocytic signaling effector and tSH2 domain containing protein, is expressed at high levels (Andreu et al., 2017). Previous work suggested that Syk kinase can also bind to the CD3z ITAMs (Bu et al., 1995), indicating that the CAR-T may promote engulfment through a similar mechanism as CAR-PFcRV. To quantitatively compare the interaction between SyktSH2and CD3z or FcRV in a membrane proximal system recapitulating physiological geometry, a study used a liposome-based assay (Figure 2 [Hui and Vale, 2014]). In this system, His10CD3z and His10-Lck (the kinase that phosphorylates CD3z) are bound to a liposome via NiNTA-lipids and the binding of labeled tandem SH2 domains to phosphorylated CD3z was measured using fluorescence quenching. Their results show that Syk-tSH2 binds the CD3z and FcRV with comparable affinity (~15 nM and ~30 nM respectively, Figure 2). | In T cells, phosphorylated ITAMs in CD3z bind to tandem SH2 domains (tSH2) in the kinase ZAP70. Zap70 is not expressed in macrophages, but Syk, a phagocytic signaling effector and tSH2 domain containing protein, is expressed at high levels (Andreu et al., 2017). Previous work suggested that Syk kinase can also bind to the CD3z ITAMs (Bu et al., 1995), indicating that the CAR-T may promote engulfment through a similar mechanism as CAR-PFcRV. To quantitatively compare the interaction between SyktSH2and CD3z or FcRV in a membrane proximal system recapitulating physiological geometry, a study used a liposome-based assay (Figure 2 [Hui and Vale, 2014]). In this system, His10CD3z and His10-Lck (the kinase that phosphorylates CD3z) are bound to a liposome via NiNTA-lipids and the binding of labeled tandem SH2 domains to phosphorylated CD3z was measured using fluorescence quenching. Their results show that Syk-tSH2 binds the CD3z and FcRV with comparable affinity (~15 nM and ~30 nM respectively, Figure 2). | ||
Line 34: | Line 38: | ||
[4]Morrissey MA, Williamson AP, Steinbach AM, Roberts EW, Kern N, Headley MB, Vale RD. Chimeric antigen receptors that trigger phagocytosis. Elife. 2018 Jun 4;7:e36688. doi: 10.7554/eLife.36688. PMID: 29862966; PMCID: PMC6008046. | [4]Morrissey MA, Williamson AP, Steinbach AM, Roberts EW, Kern N, Headley MB, Vale RD. Chimeric antigen receptors that trigger phagocytosis. Elife. 2018 Jun 4;7:e36688. doi: 10.7554/eLife.36688. PMID: 29862966; PMCID: PMC6008046. | ||
+ | |||
+ | [5]Klichinsky M, Ruella M, Shestova O, Lu XM, Best A, Zeeman M, Schmierer M, Gabrusiewicz K, Anderson NR, Petty NE, Cummins KD, Shen F, Shan X, Veliz K, Blouch K, Yashiro-Ohtani Y, Kenderian SS, Kim MY, O'Connor RS, Wallace SR, Kozlowski MS, Marchione DM, Shestov M, Garcia BA, June CH, Gill S. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol. 2020 Aug;38(8):947-953. doi: 10.1038/s41587-020-0462-y. Epub 2020 Mar 23. PMID: 32361713; PMCID: PMC7883632. | ||
<!-- Add more about the biology of this part here | <!-- Add more about the biology of this part here | ||
===Usage and Biology=== | ===Usage and Biology=== |
Revision as of 06:40, 10 October 2021
Intracellular Domain of CD3 zeta chain
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Usage and Biology
T-cell surface glycoprotein CD3 zeta chain is part of the TCR-CD3 complex present on T-lymphocyte cell surface that plays an essential role in adaptive immune response. When antigen presenting cells (APCs) activate T-cell receptor (TCR), TCR-mediated signals are transmitted across the cell membrane by the CD3 chains CD3D, CD3E, CD3G and CD3Z. All CD3 chains contain immunoreceptor tyrosine-based activation motifs (ITAMs) in their cytoplasmic domain. Upon TCR engagement, these motifs become phosphorylated by Src family protein tyrosine kinases LCK and FYN, resulting in the activation of downstream signaling pathways [1,2].
CD3Z ITAMs phosphorylation creates multiple docking sites for the protein kinase ZAP70 leading to ZAP70 phosphorylation and its conversion into a catalytically active enzyme [2].
It plays an important role in intrathymic T-cell differentiation. Additionally, participates in the activity-dependent synapse formation of retinal ganglion cells (RGCs) in both the retina and dorsal lateral geniculate nucleus (dLGN) (By similarity).
Background and detail description
Used in our project
The synthetic receptors were constructed to contain an scFv derived from an antibody recognizing the virus spike protein, CR3022, which has been reported to bind with the receptor-binding domain of the SARS-CoV-2 S glycoprotein with high affinity, and the CD8 transmembrane domain present in the aCD19 CAR for T cells (12). For the cytoplasmic domains, we used the common g subunit of Fc receptors (CARg), MEGF10 (CARMEGF10), MERTK (CARMERTK) and CD3z (CARz) in our study. These cytoplasmic domains are capable of promoting phagocytosis by macrophages[3]. More details and experimental results can be found in CAR-CD3 zeta(BBa_K4040017)
Used in the construction of CAR-T cells
Used in the construction of CAR-Macrophages cells
CAR-P is a successful strategy for directing macrophages towards cancer targets, and can initiate whole cell eating and trogocytosis leading to cancer cell elimination(Figure 2)[4].
In T cells, phosphorylated ITAMs in CD3z bind to tandem SH2 domains (tSH2) in the kinase ZAP70. Zap70 is not expressed in macrophages, but Syk, a phagocytic signaling effector and tSH2 domain containing protein, is expressed at high levels (Andreu et al., 2017). Previous work suggested that Syk kinase can also bind to the CD3z ITAMs (Bu et al., 1995), indicating that the CAR-T may promote engulfment through a similar mechanism as CAR-PFcRV. To quantitatively compare the interaction between SyktSH2and CD3z or FcRV in a membrane proximal system recapitulating physiological geometry, a study used a liposome-based assay (Figure 2 [Hui and Vale, 2014]). In this system, His10CD3z and His10-Lck (the kinase that phosphorylates CD3z) are bound to a liposome via NiNTA-lipids and the binding of labeled tandem SH2 domains to phosphorylated CD3z was measured using fluorescence quenching. Their results show that Syk-tSH2 binds the CD3z and FcRV with comparable affinity (~15 nM and ~30 nM respectively, Figure 2).
Collectively, these results demonstrate that the TCR CD3z chain can promote phagocytosis in a CAR-P, likely through the recruitment of Syk kinase[4].
Previous study has generated CAR-Ms targeting the solid tumor antigens mesothelin or HER2 and demonstrated phagocytosis of antigen-positive target cells (Fig.3a,b)[5]. Together, these data demonstrated that CD3ζ based CARs can direct anti-tumor phagocytic activity and provided support for subsequent efforts to translate this platform to primary human macrophages.
References
[1]Barber EK, Dasgupta JD, Schlossman SF, Trevillyan JM, Rudd CE. The CD4 and CD8 antigens are coupled to a protein-tyrosine kinase (p56lck) that phosphorylates the CD3 complex. Proc Natl Acad Sci U S A. 1989 May;86(9):3277-81. doi: 10.1073/pnas.86.9.3277. PMID: 2470098; PMCID: PMC287114.
[2]Iwashima M, Irving BA, van Oers NS, Chan AC, Weiss A. Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases. Science. 1994 Feb 25;263(5150):1136-9. doi: 10.1126/science.7509083. PMID: 7509083.
[3]Fu W, Lei C, Ma Z, Qian K, Li T, Zhao J, Hu S. CAR Macrophages for SARS-CoV-2 Immunotherapy. Front Immunol. 2021 Jul 23;12:669103. doi: 10.3389/fimmu.2021.669103. PMID: 34367135; PMCID: PMC8343226.
[4]Morrissey MA, Williamson AP, Steinbach AM, Roberts EW, Kern N, Headley MB, Vale RD. Chimeric antigen receptors that trigger phagocytosis. Elife. 2018 Jun 4;7:e36688. doi: 10.7554/eLife.36688. PMID: 29862966; PMCID: PMC6008046.
[5]Klichinsky M, Ruella M, Shestova O, Lu XM, Best A, Zeeman M, Schmierer M, Gabrusiewicz K, Anderson NR, Petty NE, Cummins KD, Shen F, Shan X, Veliz K, Blouch K, Yashiro-Ohtani Y, Kenderian SS, Kim MY, O'Connor RS, Wallace SR, Kozlowski MS, Marchione DM, Shestov M, Garcia BA, June CH, Gill S. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol. 2020 Aug;38(8):947-953. doi: 10.1038/s41587-020-0462-y. Epub 2020 Mar 23. PMID: 32361713; PMCID: PMC7883632.