Difference between revisions of "Part:BBa K2094002"

Line 3: Line 3:
 
<partinfo>BBa_K2094002 short</partinfo>
 
<partinfo>BBa_K2094002 short</partinfo>
  
This enzyme hydrolyzes the &#946;-1,4-glycosidic linkages of agarose.  
+
This enzyme hydrolyzes the &#946;-1,4-glycosidic linkages of agarose.
  
 
=Contribution=
 
=Contribution=
Line 18: Line 18:
 
Agar is often used in the food industry as a thickening agent or as a vegan alternative to gelatin.  
 
Agar is often used in the food industry as a thickening agent or as a vegan alternative to gelatin.  
 
It is a complex polysaccharide consisting of alternating 3-O-linked β-D-galactopyranose and 4-O-linked α-L-galactopyranose.
 
It is a complex polysaccharide consisting of alternating 3-O-linked β-D-galactopyranose and 4-O-linked α-L-galactopyranose.
Agar cannot be degraded by most microorganisms, but there are some bacteria that metabolize agar as a carbon and energy source. They are mainly found in marine environments, where food resources are limited and agar is abundant in the form of the cell wall of some algae.
+
Agar cannot be degraded by most microorganisms, but there are some bacteria that metabolize agar as a carbon and energy source. They are mainly found in marine environments, where food resources are limited and agar is abundant in the form of the cell wall of some algae [1],[2].
  
 
The idea is to use the ability of agar degradation as a selection advantage for specific bacteria in order to overcome the established antibiotic selection used in the laboratory.
 
The idea is to use the ability of agar degradation as a selection advantage for specific bacteria in order to overcome the established antibiotic selection used in the laboratory.
Line 42: Line 42:
  
  
 +
<h2>Reference</h2>
  
 +
[1]Chi, W. J., Chang, Y. K., & Hong, S. K. (2012). Agar degradation by microorganisms and agar-degrading enzymes. Applied microbiology and biotechnology, 94(4), 917–930. https://doi.org/10.1007/s00253-012-4023-2
 +
 +
[2]Su, Q., Jin, T., Yu, Y., Yang, M., Mou, H., & Li, L. (2017). Extracellular expression of a novel β-agarase from Microbulbifer sp. Q7, isolated from the gut of sea cucumber. AMB Express, 7(1), 220. https://doi.org/10.1186/s13568-017-0525-8
  
  

Revision as of 15:50, 5 October 2021


beta-agarase YM01-3

This enzyme hydrolyzes the β-1,4-glycosidic linkages of agarose.

Contribution

  • Group: iGEM Team Heidelberg 2021
  • Author: Franziska Giessler
  • Summary: The Part BBa_K2094002 was used for our project and further characterized by enzyme activity measurements.


Background

Figure1: Enzyme activity of the β-agarases


Agar is often used in the food industry as a thickening agent or as a vegan alternative to gelatin. It is a complex polysaccharide consisting of alternating 3-O-linked β-D-galactopyranose and 4-O-linked α-L-galactopyranose. Agar cannot be degraded by most microorganisms, but there are some bacteria that metabolize agar as a carbon and energy source. They are mainly found in marine environments, where food resources are limited and agar is abundant in the form of the cell wall of some algae [1],[2].

The idea is to use the ability of agar degradation as a selection advantage for specific bacteria in order to overcome the established antibiotic selection used in the laboratory.

One of the enzymes present in agarolytic bacteria is the β-Agarase that hydrolyzes the β-(1,4) glycosidic bonds (see Figure 1)





Experiments and Results

Reference

[1]Chi, W. J., Chang, Y. K., & Hong, S. K. (2012). Agar degradation by microorganisms and agar-degrading enzymes. Applied microbiology and biotechnology, 94(4), 917–930. https://doi.org/10.1007/s00253-012-4023-2

[2]Su, Q., Jin, T., Yu, Y., Yang, M., Mou, H., & Li, L. (2017). Extracellular expression of a novel β-agarase from Microbulbifer sp. Q7, isolated from the gut of sea cucumber. AMB Express, 7(1), 220. https://doi.org/10.1186/s13568-017-0525-8


Sequence and Features


Assembly Compatibility:
  • 10
    INCOMPATIBLE WITH RFC[10]
    Unknown
  • 12
    INCOMPATIBLE WITH RFC[12]
    Unknown
  • 21
    INCOMPATIBLE WITH RFC[21]
    Unknown
  • 23
    INCOMPATIBLE WITH RFC[23]
    Unknown
  • 25
    INCOMPATIBLE WITH RFC[25]
    Unknown
  • 1000
    COMPATIBLE WITH RFC[1000]