Difference between revisions of "Part:BBa K3558000"

Line 2: Line 2:
 
__NOTOC__
 
__NOTOC__
 
<partinfo>BBa_K3558000 short</partinfo>
 
<partinfo>BBa_K3558000 short</partinfo>
 +
 +
===Usage and Biology===
  
 
Small heat shock proteins (sHSP) are ATP-independent molecular chaperones which associate with misfolded proteins to prevent further aggregation when the cell is under thermal stress. They are therefore classified as “holdases”. (1) Proteins are functional when they are soluble in their environments. However, thermal stress exposes the protein hydrophobic core to the outside, rendering them insoluble. sHSPs reverse this process by binding to the exposed core and prevent them from becoming insoluble. The sHSP/substrate complex then prevents further aggregation of proteins and facilitates the binding of ATP-dependent HSPs for protein refolding. (2) sHSPs are ubiquitous across organisms as they have a high binding capacity, making them a suitable candidate in reversing heat shock. In addition, sHSP genes are upregulated by 1000 folds when they are exposed to cellular stress and this consequently can increase the activity of ATP-dependent chaperones by 80%. (3)
 
Small heat shock proteins (sHSP) are ATP-independent molecular chaperones which associate with misfolded proteins to prevent further aggregation when the cell is under thermal stress. They are therefore classified as “holdases”. (1) Proteins are functional when they are soluble in their environments. However, thermal stress exposes the protein hydrophobic core to the outside, rendering them insoluble. sHSPs reverse this process by binding to the exposed core and prevent them from becoming insoluble. The sHSP/substrate complex then prevents further aggregation of proteins and facilitates the binding of ATP-dependent HSPs for protein refolding. (2) sHSPs are ubiquitous across organisms as they have a high binding capacity, making them a suitable candidate in reversing heat shock. In addition, sHSP genes are upregulated by 1000 folds when they are exposed to cellular stress and this consequently can increase the activity of ATP-dependent chaperones by 80%. (3)
Line 7: Line 9:
  
 
<!-- Add more about the biology of this part here
 
<!-- Add more about the biology of this part here
===Usage and Biology===
+
 
  
 
It was hypothesised that transforming small heat shock proteins 22E and 22F from Chlamydomonas reinhardtii (C. reinhardtii) into Symbiodinium would increase the thermal threshold of the latter microorganism. C. reinhardtii is a green algae which is stable at 42oC, (4) well above the bleaching threshold of Great Barrier Reef. (5,6) These sHSPs target the chloroplast, hence protecting the photosystems from reactive oxygen species produced by thermal shock. (4) As a result, the expulsion of Symbiodinium sp. from the coral tissue will be prevented and the rate of bleaching will decrease.  
 
It was hypothesised that transforming small heat shock proteins 22E and 22F from Chlamydomonas reinhardtii (C. reinhardtii) into Symbiodinium would increase the thermal threshold of the latter microorganism. C. reinhardtii is a green algae which is stable at 42oC, (4) well above the bleaching threshold of Great Barrier Reef. (5,6) These sHSPs target the chloroplast, hence protecting the photosystems from reactive oxygen species produced by thermal shock. (4) As a result, the expulsion of Symbiodinium sp. from the coral tissue will be prevented and the rate of bleaching will decrease.  

Revision as of 12:12, 26 October 2020


Small Heat Shock Protein 22E (sHSP22E)

Usage and Biology

Small heat shock proteins (sHSP) are ATP-independent molecular chaperones which associate with misfolded proteins to prevent further aggregation when the cell is under thermal stress. They are therefore classified as “holdases”. (1) Proteins are functional when they are soluble in their environments. However, thermal stress exposes the protein hydrophobic core to the outside, rendering them insoluble. sHSPs reverse this process by binding to the exposed core and prevent them from becoming insoluble. The sHSP/substrate complex then prevents further aggregation of proteins and facilitates the binding of ATP-dependent HSPs for protein refolding. (2) sHSPs are ubiquitous across organisms as they have a high binding capacity, making them a suitable candidate in reversing heat shock. In addition, sHSP genes are upregulated by 1000 folds when they are exposed to cellular stress and this consequently can increase the activity of ATP-dependent chaperones by 80%. (3)


Sequence and Features


Assembly Compatibility:
  • 10
    INCOMPATIBLE WITH RFC[10]
    Illegal PstI site found at 455
    Illegal PstI site found at 461
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal PstI site found at 455
    Illegal PstI site found at 461
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    INCOMPATIBLE WITH RFC[23]
    Illegal PstI site found at 455
    Illegal PstI site found at 461
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal PstI site found at 455
    Illegal PstI site found at 461
  • 1000
    COMPATIBLE WITH RFC[1000]