Difference between revisions of "Part:BBa K3454036:Design"

Line 5: Line 5:
 
<partinfo>BBa_K3454036 SequenceAndFeatures</partinfo>
 
<partinfo>BBa_K3454036 SequenceAndFeatures</partinfo>
  
html lang="en">
 
<head>
 
    <meta charset="UTF-8">
 
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
 
    <title>Engineering Success</title>
 
      <link rel="stylesheet"  type="text/css" href="https://2020.igem.org/wiki/index.php?
 
title=Team:ShanghaiTech_China/Description_css&action=raw&ctype=text/css">
 
    <link href="https://fonts.googleapis.com/css?family=Frank+Ruhl+Libre|Roboto" rel="stylesheet">
 
    <style>
 
#sideMenu, #top_title, .patrollink, #firstHeading,  #home_logo, #sideMenu { display:none; }
 
body, html {background: #ffffff; width: 100%; height: 100%;font:12px;}
 
#bodyContent h1, #bodyContent h2, #bodyContent h3, #bodyContent h4, #bodyContent h5 { margin-bottom: 0px; }
 
#content { background: #ffffff; padding:0px; width:100%; margin-top:-7px; margin-left:0px; border:none;overflow: hidden;}
 
#bodyContent a[href ^="https://"], .link-https { padding-right:0px;}   
 
  
#title{
 
    padding: 0px;
 
    width: 100%;
 
    height: 75vh;
 
    margin: 0px auto;
 
    position: relative;
 
}
 
#title .bg{
 
    width: 100%;
 
    height: 100%;
 
    background: url("https://2020.igem.org/wiki/images/3/32/T--ShanghaiTech_China--topback2.jpg") no-repeat top fixed;
 
    background-size:100%;
 
}
 
#title .text{
 
    position: absolute;
 
    top: 50%;
 
    left: 50%;
 
    transform: translate(-50%,-50%);
 
    color: white;
 
    font-size: 3.5em;
 
    line-height: 100px;
 
    text-align: center;
 
    font-weight: bold;
 
    text-shadow: 5px 5px 5px black;
 
}
 
 
    </style>
 
</head>
 
<body>
 
   
 
 
 
        <div>&nbsp;</div>
 
        <div>&nbsp;</div>
 
  <article class="contents">
 
        <div id="RNA">
 
        <p style="font-family:'Quicksand',sans-serif;font-size: 2vh;">
 
        We designed two aptamers containing the structure-switching sequence to lock another oligonucleotide called activator DNA. Since it is locked, it cannot activate Cas12a’s cleavage. But once aptamers have recognized antibiotics, the activators will be released and can then then serve as the target DNA to activate Cas12a. Then as we introduced in <a href = "https://2020.igem.org/Team:ShanghaiTech_China/Proof_Of_Concept">Proof of Concept</a>, the Cas12a will cleave reporter ssDNA and let the whole system emit fluorescence.
 
        </p>
 
        <p style="font-family:'Quicksand',sans-serif;font-size: 2vh;line-height:20px;">&nbsp;</p>
 
 
      </div>
 
        <div id="Aptamer">
 
 
        <p style="font-family:'Quicksand',sans-serif;font-size: 2vh;">
 
      In fact, several considerations are involved in the designing process of aptamers and activator DNA since they are not exactly the same as the original aptamer. After referring to the literature<sup>1</sup> and combining the knowledge we have learned, we summarized the following tips. First and foremost, the structure-switching sequences should be included in the aptamers. Secondly, additional sequences should be added at the front and end of the original aptamer to bind the activator DNA more tightly, which can help reduce leakage. Also, based on the knowledge we knew about Cas12a at that time, the activator should be a double-strand DNA with PAM sequence.
 
        </p>
 
        <p style="font-family:'Quicksand',sans-serif;font-size: 2vh;line-height:20px;">&nbsp;</p>
 
        <p style="font-family:'Quicksand',sans-serif;font-size: 2vh;">
 
        However, if the activator is double strand structure, it will be impossible for it to pair with aptamers. How to fix this problem? We returned to the article, and found that the author used single-strand DNA as activator! We did not know who was wrong there. But based on our experience of Cas12a, we did not believe that at first. So, we lay that over and turn to other possible solutions. After several weeks, we did not make any progress in this problem. At the time we almost give up this design, we found out that when Cas12a targets ssDNA, it actually does not need a PAM sequence<sup>2</sup>! This information dispelled our doubts and boosted our confidence in the design of the aptamers and the activator.
 
        </p>
 
        <p style="font-family:'Quicksand',sans-serif;font-size: 2vh;line-height:20px;">&nbsp;</p>
 
        </p>
 
      <img class="developer-image" style="margin-left:0%; width:100%;" src="https://2020.igem.org/wiki/images/f/ff/T--ShanghaiTech_China--contribution1.jpg">
 
        <p style="font:italic 1em Georgia, serif; font-size: 1.3vh;color: rgb(93, 143, 184);margin-left: 33%;">
 
        Figure 1.The design norm of locked activator and modifying aptamer.
 
        </p>     
 
        <p style="font-family:'Quicksand',sans-serif;font-size: 2vh;line-height:20px;">&nbsp;</p>
 
      </div>
 
 
        <div id="RPA">
 
       
 
        <p style="font-family:'Quicksand',sans-serif;font-size: 2vh;">
 
      So, we redesigned the element like Figure 1. It obeys the two rules we mentioned above. The structure-switching sequences should be included in the aptamers. And additional sequences should be added at the front and end of the original aptamer to bind the activator DNA more tightly, which can help reduce leakage. And we named it as Aptamer Sandwich.
 
        </p>
 
        </div>
 
 
 
    <section>
 
      <div id="Reference">
 
        <p style="font-family:'Quicksand',sans-serif;font-size: 2vh;line-height:30px;">&nbsp;</p>
 
        <p style="font-family:'Quicksand',sans-serif;font-size: 2vh;line-height:30px;">&nbsp;</p>
 
        <h3 style="font-family:'Quicksand',sans-serif;font-size: 2vh;">Reference</h3>   
 
        <p style="font:italic 1em Georgia, serif; font-size: 1.6vh;">
 
<sup>1.</sup>Xiong, Y., Zhang, J., Yang, Z., Mou, Q., Ma, Y., Xiong, Y., & Lu, Y. (2020). Functional DNA Regulated CRISPR-Cas12a Sensors for Point-of-Care Diagnostics of Non-Nucleic-Acid Targets. Journal of the American Chemical Society, 142(1), 207–213. <br> <a href = “https://doi.org/10.1021/jacs.9b09211”>https://doi.org/10.1021/jacs.9b09211</a>
 
        </p>
 
        </p>
 
        <p style="font:italic 1em Georgia, serif; font-size: 1.6vh;">
 
<sup>2.</sup>Kellner, M. J., Koob, J. G., & Gootenberg, J. S. (2019). SHERLOCK : nucleic acid detection with CRISPR nucleases. Nature Protocols, 14(October). <br><a href = “https://doi.org/10.1038/s41596-019-0210-2”>https://doi.org/10.1038/s41596-019-0210-2</a>
 
        </p>
 
      </div>
 
    </section>
 
<div>&nbsp;</div>
 
<div>&nbsp;</div>
 
<div>&nbsp;</div>
 
  </article>
 
 
<script type="text/javascript" src="https://2020.igem.org/wiki/index.php?
 
title=Team:ShanghaiTech_China/normal_jss&action=raw&ctype=text/javascript"></script>
 
 
  <style type="text/css" media="screen">
 
    .credits {
 
      position: fixed;
 
      left: 3em;
 
      bottom: 4em;
 
      font-size: 1em;
 
      z-index: 20;
 
      color: #444;
 
      vertical-align: middle;
 
    }
 
 
    .credits * + * {
 
      margin-top: 15px;
 
    }
 
 
    .credits a {
 
      display: block;
 
      padding: 8px 10px;
 
      color: #777;
 
      border: 2px solid #bbb;
 
      background: #fff;
 
      text-decoration: none;
 
    }
 
 
    .credits a:hover {
 
      border-color: #555;
 
      color: #222;
 
    }
 
 
    @media screen and (max-height: 700px) {
 
      .credits {
 
        display: none;
 
      }
 
    }
 
 
.tod {
 
    position: absolute;
 
    left: 4.5%;
 
    top: 85em;;
 
    padding: 1em;
 
    width: 16.5%;
 
    line-height: 2;
 
}
 
.tod ul {
 
    list-style: none;
 
    padding: 0;
 
    margin: 0;
 
}
 
.tod ul ul {
 
    padding-left: 2em;
 
}
 
.tod li a {
 
    font-family: ‘Trebuchet MS’, ‘Lucida Sans Unicode’, ‘Lucida Grande’, ‘Lucida Sans’, Arial, sans-serif;
 
    font-size: 16px !important;
 
    margin: 0 12px;
 
    display: inline-block;
 
    font-weight: bolder;
 
    color: #aaa;
 
    text-decoration: none;
 
    line-height: 2.15em;
 
    -webkit-transition: all 0.3s cubic-bezier(0.23, 1, 0.32, 1);
 
    transition: all 0.3s cubic-bezier(0.23, 1, 0.32, 1);
 
}
 
.tod li.visible > a {
 
    color: #111;
 
    -webkit-transform: translate(5px);
 
    -ms-transform: translate(5px);
 
    transform: translate(5px);
 
}
 
             
 
.fixed{
 
    position: fixed;
 
    left: 6%;
 
    top: 5em;
 
}           
 
.tod-marker {
 
    position: absolute;
 
    top: 0;
 
    left: 0;
 
    width: 100%;
 
    height: 100%;
 
    z-index: -1;
 
}
 
.tod-marker path {
 
    -webkit-transition: all 0.3s ease;
 
    transition: all 0.3s ease;
 
}
 
  </style>
 
 
 
<div style = "position: relative;background-color: #aaa;height: 20px;"></div>
 
 
</body>
 
</html>
 
  
 
===Design Notes===
 
===Design Notes===
  
 +
We designed two aptamers containing the structure-switching sequence to lock another oligonucleotide called activator DNA. Since it is locked, it cannot activate Cas12a’s cleavage. But once aptamers have recognized antibiotics, the activators will be released and can then then serve as the target DNA to activate Cas12a. Then as we introduced in <a href = "https://2020.igem.org/Team:ShanghaiTech_China/Proof_Of_Concept">Proof of Concept</a>, the Cas12a will cleave reporter ssDNA and let the whole system emit fluorescence.
  
 +
In fact, several considerations are involved in the designing process of aptamers and activator DNA since they are not exactly the same as the original aptamer. After referring to the literature<sup>1</sup> and combining the knowledge we have learned, we summarized the following tips. First and foremost, the structure-switching sequences should be included in the aptamers. Secondly, additional sequences should be added at the front and end of the original aptamer to bind the activator DNA more tightly, which can help reduce leakage. Also, based on the knowledge we knew about Cas12a at that time, the activator should be a double-strand DNA with PAM sequence.
  
 +
However, if the activator is double strand structure, it will be impossible for it to pair with aptamers. How to fix this problem? We returned to the article, and found that the author used single-strand DNA as activator! We did not know who was wrong there. But based on our experience of Cas12a, we did not believe that at first. So, we lay that over and turn to other possible solutions. After several weeks, we did not make any progress in this problem. At the time we almost give up this design, we found out that when Cas12a targets ssDNA, it actually does not need a PAM sequence<sup>2</sup>! This information dispelled our doubts and boosted our confidence in the design of the aptamers and the activator.
  
 
===Source===
 
===Source===

Revision as of 11:04, 26 October 2020


Activator


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Design Notes

We designed two aptamers containing the structure-switching sequence to lock another oligonucleotide called activator DNA. Since it is locked, it cannot activate Cas12a’s cleavage. But once aptamers have recognized antibiotics, the activators will be released and can then then serve as the target DNA to activate Cas12a. Then as we introduced in <a href = "https://2020.igem.org/Team:ShanghaiTech_China/Proof_Of_Concept">Proof of Concept</a>, the Cas12a will cleave reporter ssDNA and let the whole system emit fluorescence.

In fact, several considerations are involved in the designing process of aptamers and activator DNA since they are not exactly the same as the original aptamer. After referring to the literature1 and combining the knowledge we have learned, we summarized the following tips. First and foremost, the structure-switching sequences should be included in the aptamers. Secondly, additional sequences should be added at the front and end of the original aptamer to bind the activator DNA more tightly, which can help reduce leakage. Also, based on the knowledge we knew about Cas12a at that time, the activator should be a double-strand DNA with PAM sequence.

However, if the activator is double strand structure, it will be impossible for it to pair with aptamers. How to fix this problem? We returned to the article, and found that the author used single-strand DNA as activator! We did not know who was wrong there. But based on our experience of Cas12a, we did not believe that at first. So, we lay that over and turn to other possible solutions. After several weeks, we did not make any progress in this problem. At the time we almost give up this design, we found out that when Cas12a targets ssDNA, it actually does not need a PAM sequence2! This information dispelled our doubts and boosted our confidence in the design of the aptamers and the activator.

Source

It does not come from genomic DNA. It is artificially synthesized.

References