Difference between revisions of "Part:BBa K3431007"
(→Design) |
(→Design) |
||
Line 6: | Line 6: | ||
zr31 toehold switch is a regulatory part for the downstream reporter gene. With this part, the protein expression can be controlled by the miR-31. The sequence of the toehold switch can be separated into the following 5 regions from its 5' end: TBS (trigger binding site), stem region, loop region with RBS (ribosome binding site), complimentary stem region with a start codon, and linker. Upon binding with miR-31, its hairpin structure can be opened up and the ribosomes can bind with its RBS (ribosome binding site), triggering the translation of the downstream reporter. | zr31 toehold switch is a regulatory part for the downstream reporter gene. With this part, the protein expression can be controlled by the miR-31. The sequence of the toehold switch can be separated into the following 5 regions from its 5' end: TBS (trigger binding site), stem region, loop region with RBS (ribosome binding site), complimentary stem region with a start codon, and linker. Upon binding with miR-31, its hairpin structure can be opened up and the ribosomes can bind with its RBS (ribosome binding site), triggering the translation of the downstream reporter. | ||
− | === | + | ===Design=== |
<html> | <html> | ||
<br> | <br> |
Revision as of 00:48, 25 October 2020
zr31 Toehold Switch for miR-31 Detection
Description
zr31 toehold switch is a regulatory part for the downstream reporter gene. With this part, the protein expression can be controlled by the miR-31. The sequence of the toehold switch can be separated into the following 5 regions from its 5' end: TBS (trigger binding site), stem region, loop region with RBS (ribosome binding site), complimentary stem region with a start codon, and linker. Upon binding with miR-31, its hairpin structure can be opened up and the ribosomes can bind with its RBS (ribosome binding site), triggering the translation of the downstream reporter.
Design
NUPACK ANALYSIS
VIENNA RNA PACKAGE
Link to our model page: https://2020.igem.org/Team:CSMU_Taiwan/Model
Experiment result
References
Green, A. A., Silver, P. A., Collins, J. J., & Yin, P. (2014). Toehold switches: de-novo-designed regulators of gene expression. Cell, 159(4), 925-939. Pardee, K., Green, A. A., Takahashi, M. K., Braff, D., Lambert, G., Lee, J. W., ... & Daringer, N. M. (2016). Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell, 165(5), 1255-1266.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]