Difference between revisions of "Part:BBa K3338005"

 
Line 3: Line 3:
 
<partinfo>BBa_K3338005 short</partinfo>
 
<partinfo>BBa_K3338005 short</partinfo>
  
Long description
 
 
<!-- Add more about the biology of this part here
 
 
===Usage and Biology===
 
===Usage and Biology===
  
<!-- -->
+
The human interleukin-6 promoter originally controls the expression of the cytokine Il-6 that is involved in the regulation of the acute-phase response to injury and infection but also other processes like hematopoiesis and embryonal development (Heinrich <i>el al.</i> 2003). The regulation of transcription exerted by the IL-6 promoter is mainly controlled by several cis-acting response elements present within the promoter region including binding motifs for NF-&#954;B, NF-IL6, CREB, C/EBP, AP-1 and AP-2 (Xiao <i>et al.</i> 2004, Beetz <i>et al.</i> 2000). The regulation of the IL-6 promoter depends on the cell type and the stimulus. This means that different transcription factors are needed under different conditions. In our study we used LPS to induce IL-6 promoter activation. In this case the transcription factors NF-&#954;B and AP1 play important roles (Xiao <i>et al.</i> 2004, Liu <i>et al.</i> 2018). The activation of the promoter is achieved by the cooperative binding of NF-&#954;B and c-Jun (AP-1) (Xiao <i>et al.</i> 2004). AP-1- and NF-&#954;B-translocation to the nucleus is triggered downstream of Toll like receptor (TLR) signaling cascades involving TRIF, MyD88, RIPK1 and TAK1 (Kawai and Akira 2007).
<span class='h3bb'>Sequence and Features</span>
+
 
 +
In our study it was tested for a LPS-sensitivity for use our inflammatory toxin sensor. Unfortunately the mutagenized promoter is not sensitive to LPS supplementation to the medium of Hela cells.
 +
 
 +
=Sequence and Features=
 +
 
 
<partinfo>BBa_K3338005 SequenceAndFeatures</partinfo>
 
<partinfo>BBa_K3338005 SequenceAndFeatures</partinfo>
  
Line 17: Line 18:
 
<partinfo>BBa_K3338005 parameters</partinfo>
 
<partinfo>BBa_K3338005 parameters</partinfo>
 
<!-- -->
 
<!-- -->
 +
 +
=References=
 +
 +
Beetz, A., Peter, R. U., Oppel, T., Kaffenberger, W., Rupec, R. A., Meyer, M., van Beuningen, D., Kind, P., & Messer, G. (2000). NF-kappaB and AP-1 are responsible for inducibility of the IL-6 promoter by ionizing radiation in HeLa cells. <i>International journal of radiation biology</i>, 76(11), 1443–1453.
 +
 +
Heinrich, P. C., Behrmann, I., Haan, S., Hermanns, H. M., Müller-Newen, G., & Schaper, F. (2003). Principles of interleukin (IL)-6-type cytokine signalling and its regulation. <i>The Biochemical journal</i>, 374(Pt 1), 1–20.
 +
 +
Kawai, T., & Akira, S. (2007). Signaling to NF-kappaB by Toll-like receptors. <i>Trends in molecular medicine</i>, 13(11), 460–469.
 +
 +
Liu, X., Yin, S., Chen, Y., Wu, Y., Zheng, W., Dong, H., Bai, Y., Qin, Y., Li, J., Feng, S., & Zhao, P. (2018). LPS‑induced proinflammatory cytokine expression in human airway epithelial cells and macrophages via NF‑κB, STAT3 or AP‑1 activation. <i>Molecular medicine reports</i>, 17(4), 5484–5491.
 +
 +
Xiao, W., Hodge, D. R., Wang, L., Yang, X., Zhang, X., & Farrar, W. L. (2004). NF-kappaB activates IL-6 expression through cooperation with c-Jun and IL6-AP1 site, but is independent of its IL6-NFkappaB regulatory site in autocrine human multiple myeloma cells. <i>Cancer biology & therapy</i>, 3(10), 1007–1017.

Revision as of 10:40, 26 October 2020


Interleukin-6 Promoter mutagenized (IL-6 Pmut)

Usage and Biology

The human interleukin-6 promoter originally controls the expression of the cytokine Il-6 that is involved in the regulation of the acute-phase response to injury and infection but also other processes like hematopoiesis and embryonal development (Heinrich el al. 2003). The regulation of transcription exerted by the IL-6 promoter is mainly controlled by several cis-acting response elements present within the promoter region including binding motifs for NF-κB, NF-IL6, CREB, C/EBP, AP-1 and AP-2 (Xiao et al. 2004, Beetz et al. 2000). The regulation of the IL-6 promoter depends on the cell type and the stimulus. This means that different transcription factors are needed under different conditions. In our study we used LPS to induce IL-6 promoter activation. In this case the transcription factors NF-κB and AP1 play important roles (Xiao et al. 2004, Liu et al. 2018). The activation of the promoter is achieved by the cooperative binding of NF-κB and c-Jun (AP-1) (Xiao et al. 2004). AP-1- and NF-κB-translocation to the nucleus is triggered downstream of Toll like receptor (TLR) signaling cascades involving TRIF, MyD88, RIPK1 and TAK1 (Kawai and Akira 2007).

In our study it was tested for a LPS-sensitivity for use our inflammatory toxin sensor. Unfortunately the mutagenized promoter is not sensitive to LPS supplementation to the medium of Hela cells.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal NheI site found at 1347
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 220
    Illegal BamHI site found at 395
    Illegal XhoI site found at 1581
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI site found at 340
    Illegal BsaI.rc site found at 387
    Illegal BsaI.rc site found at 696


References

Beetz, A., Peter, R. U., Oppel, T., Kaffenberger, W., Rupec, R. A., Meyer, M., van Beuningen, D., Kind, P., & Messer, G. (2000). NF-kappaB and AP-1 are responsible for inducibility of the IL-6 promoter by ionizing radiation in HeLa cells. International journal of radiation biology, 76(11), 1443–1453.

Heinrich, P. C., Behrmann, I., Haan, S., Hermanns, H. M., Müller-Newen, G., & Schaper, F. (2003). Principles of interleukin (IL)-6-type cytokine signalling and its regulation. The Biochemical journal, 374(Pt 1), 1–20.

Kawai, T., & Akira, S. (2007). Signaling to NF-kappaB by Toll-like receptors. Trends in molecular medicine, 13(11), 460–469.

Liu, X., Yin, S., Chen, Y., Wu, Y., Zheng, W., Dong, H., Bai, Y., Qin, Y., Li, J., Feng, S., & Zhao, P. (2018). LPS‑induced proinflammatory cytokine expression in human airway epithelial cells and macrophages via NF‑κB, STAT3 or AP‑1 activation. Molecular medicine reports, 17(4), 5484–5491.

Xiao, W., Hodge, D. R., Wang, L., Yang, X., Zhang, X., & Farrar, W. L. (2004). NF-kappaB activates IL-6 expression through cooperation with c-Jun and IL6-AP1 site, but is independent of its IL6-NFkappaB regulatory site in autocrine human multiple myeloma cells. Cancer biology & therapy, 3(10), 1007–1017.