Difference between revisions of "Part:BBa K3470021"
(→=Usage and Biology) |
|||
Line 3: | Line 3: | ||
Constitutive Promoter - RBS - MerE - RBS - Double Terminator | Constitutive Promoter - RBS - MerE - RBS - Double Terminator | ||
− | ==Usage and Biology= | + | ==Usage and Biology== |
MerE is a transmembrane component of the mer transport system which helps in the uptake of mercury inside the cell. It helps in the transport of organo-mercury compounds. (Sone et al., 2013) | MerE is a transmembrane component of the mer transport system which helps in the uptake of mercury inside the cell. It helps in the transport of organo-mercury compounds. (Sone et al., 2013) | ||
− | ==Proposed Experimentation == | + | ==Proposed Experimentation== |
To determine the final transport design, we test three circuits consisting of a combination of genes among MerP, MerC, MerT and MerE. The circuit showing the most effective results can be chosen as the bio-brick for the transport system for our first plasmid. Circuits we test for the final transport design system: MerP-MerT-MerC-MerE, MerC-MerE, MerP-MerT –MerE. To test the efficiency and characterize each of the 4 parts separately we carry out experiments with each of the parts making use of 2 test circuits and 2 controls. | To determine the final transport design, we test three circuits consisting of a combination of genes among MerP, MerC, MerT and MerE. The circuit showing the most effective results can be chosen as the bio-brick for the transport system for our first plasmid. Circuits we test for the final transport design system: MerP-MerT-MerC-MerE, MerC-MerE, MerP-MerT –MerE. To test the efficiency and characterize each of the 4 parts separately we carry out experiments with each of the parts making use of 2 test circuits and 2 controls. | ||
Line 25: | Line 25: | ||
E. coli cells inoculated with methylmercury chloride are grown for the required amount of time according to the results of the preliminary experiment respectively for the 2 circuits to be tested and 2 controls. The cell suspension is centrifuged and the mercury concentration in the supernatant for each set is determined with gas chromatography. Plots of concentration vs time for each of the sets are analysed to understand the efficiency of the parts in transporting methylmercury. | E. coli cells inoculated with methylmercury chloride are grown for the required amount of time according to the results of the preliminary experiment respectively for the 2 circuits to be tested and 2 controls. The cell suspension is centrifuged and the mercury concentration in the supernatant for each set is determined with gas chromatography. Plots of concentration vs time for each of the sets are analysed to understand the efficiency of the parts in transporting methylmercury. | ||
− | ==References == | + | ==References== |
Sone, Y., Nakamura, R., Pan-Hou, H., Itoh, T., & Kiyono, M. (2013). Role of MerC, MerE, MerF, MerT, and/or MerP in resistance to mercurials and the transport of mercurials in escherichia coli. Biological and Pharmaceutical Bulletin, 36(11), 1835–1841. https://doi.org/10.1248/bpb.b13-00554 | Sone, Y., Nakamura, R., Pan-Hou, H., Itoh, T., & Kiyono, M. (2013). Role of MerC, MerE, MerF, MerT, and/or MerP in resistance to mercurials and the transport of mercurials in escherichia coli. Biological and Pharmaceutical Bulletin, 36(11), 1835–1841. https://doi.org/10.1248/bpb.b13-00554 |
Revision as of 17:36, 21 October 2020
Circuit
Constitutive Promoter - RBS - MerE - RBS - Double Terminator
Usage and Biology
MerE is a transmembrane component of the mer transport system which helps in the uptake of mercury inside the cell. It helps in the transport of organo-mercury compounds. (Sone et al., 2013)
Proposed Experimentation
To determine the final transport design, we test three circuits consisting of a combination of genes among MerP, MerC, MerT and MerE. The circuit showing the most effective results can be chosen as the bio-brick for the transport system for our first plasmid. Circuits we test for the final transport design system: MerP-MerT-MerC-MerE, MerC-MerE, MerP-MerT –MerE. To test the efficiency and characterize each of the 4 parts separately we carry out experiments with each of the parts making use of 2 test circuits and 2 controls.
Circuits:
1. The final transport design system
2. Constitutive Promoter - RBS - (The part to be tested, i.e. MerP, MerC, MerT or MerE) - RBS - Double Terminator.
Controls:
1. Final circuit design without the part to be tested
2. Wild type Escherichia coli DH5alpha.
E. coli cells inoculated with methylmercury chloride are grown for the required amount of time according to the results of the preliminary experiment respectively for the 2 circuits to be tested and 2 controls. The cell suspension is centrifuged and the mercury concentration in the supernatant for each set is determined with gas chromatography. Plots of concentration vs time for each of the sets are analysed to understand the efficiency of the parts in transporting methylmercury.
References
Sone, Y., Nakamura, R., Pan-Hou, H., Itoh, T., & Kiyono, M. (2013). Role of MerC, MerE, MerF, MerT, and/or MerP in resistance to mercurials and the transport of mercurials in escherichia coli. Biological and Pharmaceutical Bulletin, 36(11), 1835–1841. https://doi.org/10.1248/bpb.b13-00554