Difference between revisions of "Part:BBa K3561021"

Line 16: Line 16:
 
<span class='h3bb'>Sequence and Features</span>
 
<span class='h3bb'>Sequence and Features</span>
 
<partinfo>BBa_K3561021 SequenceAndFeatures</partinfo>
 
<partinfo>BBa_K3561021 SequenceAndFeatures</partinfo>
 +
 +
<h2>Modelling</h2>
 +
From our molecular dynamics, we were able to determine the distance of the peptide from the palladium ion, the radius of gyration, the RMSD score and the total energy of the system.
 +
 +
We can compare the bond lengths of our peptides with the distances reported by previous literature to evaluate the attraction between the palladium ion and the peptide. The distance should also stay consistent.
 +
 +
The radius of gyration represent the compactness of the peptide, the peptide is generally more stable if the standard deviation is smaller. RMSD measures the average distance each atom deviated from the start of the simulation. A small deviation in RMSD indicates a stable structure.
 +
 +
We have also evaluated the total energy of the system during the simulation, if the total energy of the system varies a lot, it indicates that the law of energy conservation has not been fulfilled and further in vitro analysis is required to prove its reducing ability.
 +
 +
More details of how our molecular dynamics is run can be found on our team wiki.
 +
 +
 +
[[File:BBa K3561021 radius of gyration 21.jpg|800px]]
 +
 +
[[File:BBa K3561021 distance 21.jpg|800px]]
 +
 +
[[File:BBa K3561021 RMSD 21.jpg|800px]]
 +
 +
[[File:BBa K3561021 total energy 21.jpg|800px]]
 +
 +
  
  

Revision as of 14:09, 21 October 2020


SVTQNKY(Sarikaya et al., 2003)

This part is a reported palladium binding peptide. It is used as a library peptide in our project to act as a template for our mutations. The results of molecular dynamics for our modified peptides are also compared with this peptide. This palladium binding peptide was also used by team St Andrew's in 2012 (BBa_K925005).

This peptide has an isoelectric point of 9.7, a molecular weight of 0.84kDa and hydrophobicity of 5.86. The serine and threonine residues at positions 1 and 3 are reported to be important in the binding of palladium(Sarikaya et al., 2003).

References

Sarikaya, et al. “Molecular Biomimetics: Nanotechnology through Biology.” Nature News, Nature Publishing Group, 2003, www.nature.com/articles/nmat964.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]

Modelling

From our molecular dynamics, we were able to determine the distance of the peptide from the palladium ion, the radius of gyration, the RMSD score and the total energy of the system.

We can compare the bond lengths of our peptides with the distances reported by previous literature to evaluate the attraction between the palladium ion and the peptide. The distance should also stay consistent.

The radius of gyration represent the compactness of the peptide, the peptide is generally more stable if the standard deviation is smaller. RMSD measures the average distance each atom deviated from the start of the simulation. A small deviation in RMSD indicates a stable structure.

We have also evaluated the total energy of the system during the simulation, if the total energy of the system varies a lot, it indicates that the law of energy conservation has not been fulfilled and further in vitro analysis is required to prove its reducing ability.

More details of how our molecular dynamics is run can be found on our team wiki.


BBa K3561021 radius of gyration 21.jpg

800px

BBa K3561021 RMSD 21.jpg

BBa K3561021 total energy 21.jpg