Difference between revisions of "Part:BBa K2752003"
Line 1: | Line 1: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
=result= | =result= | ||
− | The promoter should be fully activated at the highest uric acid concentration safe to human body (0.465 mM). The activity of the promoters were determined by measuring the fluorescence intensity of the enhanced green fluorescent protein (EGFP). The results showed that the Phuc2 had the highest sensitive and activity at the conditions of 0.1 mM and 0.01 mM of uric acid. Then, the EGFP coding sequence was replaced by the uricase gene to check whether the module could sense and metabolize the uric acid. As shown in Fig. | + | The promoter should be fully activated at the highest uric acid concentration safe to human body (0.465 mM). The activity of the promoters were determined by measuring the fluorescence intensity of the enhanced green fluorescent protein (EGFP). The results showed that the Phuc2 had the highest sensitive and activity at the conditions of 0.1 mM and 0.01 mM of uric acid. Then, the EGFP coding sequence was replaced by the uricase gene to check whether the module could sense and metabolize the uric acid. As shown in Fig.3, the control group kept constant uric acid levels, but the experimental group displayed reduced uric acid concentrations in a time-dependent manner in the first 3 h of incubation. After that, the uric acid levels kept constant. The data suggested that the expression of uricase was induced at high concentrations of uric acid and repressed at its relatively low concentrations. The result indicated that the expression of uricase was under the control of Phuc2 responsive to the concentration of uric acid.[https://2019.igem.org/Team:NEFU_China/Results See more information on iGEM19_NEFU_China's Result PAGE] |
− | [[File:T--NEFU_China--parts--hucr3.png|500px|thumb|left|Fig. | + | [[File:T--NEFU_China--parts--hucr3.png|500px|thumb|left|Fig.1 Comparison of induction strength of the promoter Phuc1 (circle), Phuc2 (square), and Phuc3 (triangle) by measuring green fluorescence of EGFP at 0.1 mM of the inducer uric acid (with 1:100 dilution of culture inoculation). Error bars represent standard deviations.]] |
− | [[File:T--NEFU_China--parts--hucr4.png|500px|thumb|left|Fig. | + | [[File:T--NEFU_China--parts--hucr4.png|500px|thumb|left|Fig.2 Comparison of induction strength of the promoter Phuc1 (circle), Phuc2 (square), and Phuc3 (triangle) by measuring fluorescence of EGFP at 0.01 mM of the inducer uric acid (with 1:100 dilution of culture inoculation). Error bars represent standard deviations.]] |
− | [[File:T--NEFU_China--parts--hucr5.png|500px|thumb|left|Fig. | + | [[File:T--NEFU_China--parts--hucr5.png|500px|thumb|left|Fig.3 The cultured bacteria were transferred into M9 medium containing 8 mM uric acid. Samples were collected every 30 min to measure the concentrations of uric acid. The control group was the Nissle bacteria while the experimental group was the Nissle bacteria with the uric acid regulation module. Error bars represent standard deviations.]] |
Revision as of 17:00, 21 October 2019
result
The promoter should be fully activated at the highest uric acid concentration safe to human body (0.465 mM). The activity of the promoters were determined by measuring the fluorescence intensity of the enhanced green fluorescent protein (EGFP). The results showed that the Phuc2 had the highest sensitive and activity at the conditions of 0.1 mM and 0.01 mM of uric acid. Then, the EGFP coding sequence was replaced by the uricase gene to check whether the module could sense and metabolize the uric acid. As shown in Fig.3, the control group kept constant uric acid levels, but the experimental group displayed reduced uric acid concentrations in a time-dependent manner in the first 3 h of incubation. After that, the uric acid levels kept constant. The data suggested that the expression of uricase was induced at high concentrations of uric acid and repressed at its relatively low concentrations. The result indicated that the expression of uricase was under the control of Phuc2 responsive to the concentration of uric acid.See more information on iGEM19_NEFU_China's Result PAGE
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal XhoI site found at 508
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI.rc site found at 244
Illegal SapI.rc site found at 208