Difference between revisions of "Part:BBa K3308027"

(Overview)
Line 4: Line 4:
 
===A-B Linker part===
 
===A-B Linker part===
 
===Overview===
 
===Overview===
[[File:split-linker general concept 44-68.png|900px|thumb|right| ]] The Pittsburgh iGEM team 2019 designed a  
+
[[File:split-linker general concept 44-68.png|975px|thumb|center| ]] The Pittsburgh iGEM team 2019 designed a  
  
 
[[#References|[1]]]  
 
[[#References|[1]]]  

Revision as of 02:40, 21 October 2019


Split linker constructs: AC: gp41-1-GS linker-gp41-8

A-B Linker part

Overview

Split-linker general concept 44-68.png
The Pittsburgh iGEM team 2019 designed a

[1]

Figure 2: Nesting NrdJ-1 Inteins with gp41-1 and TvoVMA split inteins.This composite part contains the N-terminal of primary splicing intein, gp41-1. We have denoted it as the MSP construct. This costruct is the positive control of functional splciign fo NrdJ-1. If there is SPlicing between NSP and CSP then the Mixed spliced product

Design

Usage

Results


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 408
    Illegal BglII site found at 1198
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI site found at 106

References

[1] Gramespacher, J. A., Stevens, A. J., Thompson, R. E., & Muir, T. W. (2018). Improved protein splicing using embedded split inteins. Protein Science, 27(3), 614–619. https://doi.org/10.1002/pro.3357

[2] Beyer, H.M., Mikula, K.M., Li, M.,Wlodawer, A., Iwai, H., (2019) The crystal structure of the naturally split gp41-1 intein guides the engineering of orthogonal split inteins from a cis-splicing intein.BioRxiv. https://doi.org/10.1101/546465

[3] Lockless, S. W., & Muir, T. W. (2009). Traceless protein splicing utilizing evolved split inteins. Proceedings of the National Academy of Sciences of the United States of America, 106(27), 10999–11004. https://doi.org/10.1073/pnas.0902964106

[4]  Amitai, G., Callahan, B. P., Stanger, M. J., Belfort, G., & Belfort, M. (2009). Modulation of intein activity by its neighboring extein substrates. Proceedings of the National Academy of Sciences, 106(27), 11005–11010. https://doi.org/10.1073/pnas.0904366106

[5]  Appleby-Tagoe, J. H., Thiel, I. V., Wang, Y., Wang, Y., Mootz, H. D., & Liu, X. Q. (2011). Highly efficient and more general cis- and trans-splicing inteins through sequential directed evolution. Journal of Biological Chemistry, 286(39), 34440–34447. https://doi.org/10.1074/jbc.M111.277350

[6] Shah, N. H., & Muir, T. W. (2014). Inteins: Nature’s gift to protein chemists. Chemical Science, 5(2), 446–461. https://doi.org/10.1039/c3sc52951g

[7] Øemig, J. S. (2013)Structural Studies on Intein. (Published Doctoral Dissertation). University of Helsinki. Helsinki, Finland Retrieved from https://pdfs.semanticscholar.org/3c6a/b9fa31488316df5f421869163101ba13037e.pdf

Contribution Markup

This page was was last updated by Pittsburgh 2019 team.