Difference between revisions of "Part:BBa K3185000"
Line 24: | Line 24: | ||
==Purification== | ==Purification== | ||
− | [[File:SPYtag TmEncapsulin.png|300px|thumb|right| | + | [[File:SPYtag TmEncapsulin.png|300px|thumb|right|SDS-PAGE of imidazole elutes, CBB stained]] |
<h3><font size="4.5">Expression</font> </h3> | <h3><font size="4.5">Expression</font> </h3> | ||
<ul> | <ul> |
Revision as of 23:43, 20 October 2019
SPYtag inserted Tm Encapsulin
Usage and Biology
TmEncapsulin is a protein found from Thermotoga maritima. A paper says that it consists of 60 monomers and forms capsule, Virus-like particle(VLP)[1]. iGEM also treats it as a useful part (BBa_K192000).
We used TmEncapsulin as a biological polymer. We inserted SpyTag in TmEncapsulin. This enables TmEncapsulin to display different types of proteins on the surface of the protein capsule. (See Fig.2) (SpyCatcher:BBa_K1159200, SpyTag:BBa_K1159201)[2]. SpyTag forms an isopeptide bond with SpyCatcher when they are mixed[3]. In previous research about TmEncap, it is showed peptides inserted after 138th amino acid in TmEncap can be exposed on the protein capsule as a loop[4]. Furthermore, “Author et.al” showed when SpyTag is inserted at the same position, SpyCatcher/SpyTag also forms a bond between SpyCatcher and SpyTag inserted TmEncap (SpyTmEnc)[5].
File:T--Kyoto--SpyTmEnc.png
Also, this has three tag and cleavage sites. First is 6x-His tag placed in the C-terminus of TmEncapsulin for protein purification by using Ni-NTA beads. However, in a paper, Ni-NTA beads cannot bind to 6x-His tag added in C-terminus because it doesn’t display enough to the surface of the protein capsule[4]. To solve this problem, we inserted second tag. Second is HAtag inserted between TmEncapsulin and 6x-His tag in expectation of C-terminus to display on the surface of the capsule. Third is 6x-His-tag and linker inserted between #43 and #44 amino acids of native encapsulin for improving heat-resistance of TmEncapsulin. To design third one, we refered BBa_K2686002 of iGEM EPFL 2018 and the same paper. (BBa_K2686002)
We put it between the BamHI site and the Ndel site on pET11-a. We used BL21 (DE3) for gene expression. We used the Ni-NTA Agarose for purification. After that, we confirmed the molecular weight of SpyCatcher inserted TmEncapusulin by using SDS-PAGE.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 77
Illegal BglII site found at 597 - 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal SapI.rc site found at 426
Illegal SapI.rc site found at 457
Purification
Expression
- Cells were grown in 200ml LB media (100μg/ml Ampicillin) at 37oC shaking at 140 rpm to an OD600 of 0.5, verifying via a spectrophotometer.
- Protein was expressed in 0.1mM IPTG for 2hours.
SDS-PAGE
Result
References
1 Putri, R.M., Allende-Ballestero, C., Luque, D., Klem, R., Rousou, K.A., Liu, A., Traulsen, C.H.H., Rurup, W.F., Koay, M.S.T., Castón, J.R., et al. (2017).
Structural Characterization of Native and Modified Encapsulins as Nanoplatforms for in Vitro Catalysis and Cellular Uptake.
ACS Nano 11, 12796–12804.
2 Veggiani, G., Nakamura, T., Brenner, M.D., Gayet, R. V., Yan, J., Robinson, C. V., and Howarth, M. (2016).
Programmable polyproteams built using twin peptide superglues.
Proc. Natl. Acad. Sci. U. S. A. 113, 1202–1207.
3 Zakeri, B., Fierer, J.O., Celik, E., Chittock, E.C., Schwarz-Linek, U., Moy, V.T., and Howarth, M. (2012).
Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin.
Proc. Natl. Acad. Sci. U. S. A. 109.
4 Moon, H., Lee, J., Min, J., and Kang, S. (2014).
Developing genetically engineered encapsulin protein cage nanoparticles as a targeted delivery nanoplatform.
Biomacromolecules 15, 3794–3801.
5 Bae, Y., Kim, G.J., Kim, H., Park, S.G., Jung, H.S., and Kang, S. (2018).
Engineering Tunable Dual Functional Protein Cage Nanoparticles Using Bacterial Superglue.
Biomacromolecules 19, 2896–2904.